原文:單變量微積分筆記23——部分分式

求解被積函數是部分分式P x Q x 的積分,P x 和Q x 是關於x多項式。如果不能求出這類積分的原函數,結果將令人沮喪,現在我們要試圖尋找一個有效的方法求解這類問題。 選定系數法 這個很容易: 但是如果將其寫成:看起來就不那么容易求解了。這就要求我們能夠去掉部分分式的偽裝,也就是展開部分分式,變成我們熟悉的被積函數。 首先對被積函數的分母進行因式分解,利用初中的十字相乘法: 再將其拆分為新 ...

2017-11-21 22:25 0 2154 推薦指數:

查看詳情

變量微積分筆記23——散度定理

  散度定理,又稱為高斯散度定理、高斯公式、高斯-奧斯特羅格拉德斯基公式或高-奧公式,是指在向量分析中,一個把向量場通過曲面的流動(即通量)與曲面內部的向量場的表現聯系起來的定理。它經常應用於矢量分析中。矢量場的散度在體積D上的體積分等於矢量場在限定該體積的閉合曲面s上的面積分。 散度定理 ...

Fri Jun 08 22:05:00 CST 2018 0 2757
部分分式展開

部分分式展開 部分分式展開的步驟主要為: 判斷有理分式是否為假分式,若是則將其化為真分式。 有理分式 \[\def\MY#1#2{ #1_{#2} x^{#2}} F(x) = \frac{N(x)}{D(x)}= \frac{ \MY{b}{m} + \MY ...

Sat Sep 18 04:09:00 CST 2021 0 511
變量微積分筆記13——定積分

  定積分積分的一種,是函數f(x)在區間[a,b]上的積分和的極限。這里應注意定積分與不定積分之間的關系:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函數表達式,它們僅僅在數學上有一個計算關系(牛頓-萊布尼茨公式),其它一點關系都沒有!一個函數,可以存在不定積分 ...

Wed Oct 18 06:48:00 CST 2017 0 2055
變量微積分筆記24——分部積分

  不是所有被積函數都能解析地寫出原函數。對於那些可能寫出來的函數,也需要一定的積分技巧才能隨心所欲,分部積分正是其中很重要的一種技巧。 基本公式   部分積分演變自積分的乘法法則: 示例1   看起來很難對付,現在嘗試用部分積分解決。   令u = lnx,u’ = (lnx ...

Fri Nov 24 06:42:00 CST 2017 0 1458
變量微積分筆記14——微積分第一基本定理

微積分第一基本定理   如果F’(x) = f(x),那么:   如果將F用不定積分表示,F =∫f(x)dx,微積分第一基本定理可以看作為是兩個不定積分賦予特定的值,再用符號連接起來,計算具體的數值。   這里引入一個新符號:   於是: 示例1   示例 ...

Wed Oct 25 06:43:00 CST 2017 0 4554
變量微積分筆記15——微積分第二基本定理

微積分第二基本定理   這里需要注意t與x的關系,它的意思是一個函數能夠找到相應的積分方式去表達。如果F’=f,則:   下面是第二基本定理的證明。   證明需要采用畫圖法,如上圖所示,曲線是y=f(x),兩個陰影部分的面積分別是G(x)和ΔG(x),其中:   當Δx足夠 ...

Wed Nov 01 06:44:00 CST 2017 0 4471
變量微積分筆記29——反常積分和瑕積分

  我們已經學習了有限區間上的積分,但對於無窮的情況和區間上有奇點的情況仍無法理解。這就需要無窮積分和瑕積分來處理了,它們看起來十分有趣。 增長和衰減速率   通過上一章的內容,我們已經可以做出一些總結,在洛必達法則中,如果f(x) << g(x)且f,g > 0,那么當x ...

Sat Dec 09 06:36:00 CST 2017 0 9356
變量微積分筆記17——通量

  在流體運動中,通量是單位時間內流經某單位面積的某屬性量,是表示某屬性量輸送強度的物理量。在大氣科學中,包含動量通量、熱通量、物質通量和水通量。   本章關於向量和點積的相關知識課參考《線性代數筆記3——向量2(點積)》。 通量   通量實際上是一種線積分。如果有一條平面曲線C和這個平面 ...

Fri May 04 02:48:00 CST 2018 2 3708
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM