定積分是積分的一種,是函數f(x)在區間[a,b]上的積分和的極限。這里應注意定積分與不定積分之間的關系:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函數表達式,它們僅僅在數學上有一個計算關系(牛頓-萊布尼茨公式),其它一點關系都沒有!一個函數,可以存在不定積分 ...
尋找最值 在上篇文章曲線構圖中,我們可以非常容易地從圖上找到函數的最值點。想要求得一個函數的最值點,自然會聯想到通過構圖尋找,但是構圖並不是一個輕松的過程。觀察最值點在函數曲線上的位置,可以得出結論:最值點可能存在於臨界點 無限遠端或駐點。因此僅需要知道這幾個點便可以知道函數的最值點。 正方形的最大面積之和 很多情況下最值問題會以文字敘述的形式出現,下面是一個典型的例子: 將一段長為 米的繩子剪成 ...
2017-09-20 22:31 0 1090 推薦指數:
定積分是積分的一種,是函數f(x)在區間[a,b]上的積分和的極限。這里應注意定積分與不定積分之間的關系:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函數表達式,它們僅僅在數學上有一個計算關系(牛頓-萊布尼茨公式),其它一點關系都沒有!一個函數,可以存在不定積分 ...
不是所有被積函數都能解析地寫出原函數。對於那些可能寫出來的函數,也需要一定的積分技巧才能隨心所欲,分部積分正是其中很重要的一種技巧。 基本公式 部分積分演變自積分的乘法法則: 示例1 看起來很難對付,現在嘗試用部分積分解決。 令u = lnx,u’ = (lnx ...
微積分第一基本定理 如果F’(x) = f(x),那么: 如果將F用不定積分表示,F =∫f(x)dx,微積分第一基本定理可以看作為是兩個不定積分賦予特定的值,再用符號連接起來,計算具體的數值。 這里引入一個新符號: 於是: 示例1 示例 ...
微積分第二基本定理 這里需要注意t與x的關系,它的意思是一個函數能夠找到相應的積分方式去表達。如果F’=f,則: 下面是第二基本定理的證明。 證明需要采用畫圖法,如上圖所示,曲線是y=f(x),兩個陰影部分的面積分別是G(x)和ΔG(x),其中: 當Δx足夠 ...
我們已經學習了有限區間上的積分,但對於無窮的情況和區間上有奇點的情況仍無法理解。這就需要無窮積分和瑕積分來處理了,它們看起來十分有趣。 增長和衰減速率 通過上一章的內容,我們已經可以做出一些總結,在洛必達法則中,如果f(x) << g(x)且f,g > 0,那么當x ...
在流體運動中,通量是單位時間內流經某單位面積的某屬性量,是表示某屬性量輸送強度的物理量。在大氣科學中,包含動量通量、熱通量、物質通量和水通量。 本章關於向量和點積的相關知識課參考《線性代數筆記3——向量2(點積)》。 通量 通量實際上是一種線積分。如果有一條平面曲線C和這個平面 ...
本篇博客只是博主為了記錄重要概念寫的 本博客內的文章均可通過百度“漫步微積分”找到 三:如何計算切線的斜率 四:導數的定義 六:極限 七:連續函數 ...
在一元函數中,我們已經知道導數就是函數的變化率。對於二元函數我們同樣要研究它的“變化率”。 在xOy平面內,當動點由P(x0,y0)沿不同方向變化時,函數f(x,y)的變化快慢一般說來是不同 ...