二項式定理與組合恆等式
前置知識
\[\dbinom {n} {k} = \mathrm{C} _ n ^ k = \dfrac {n!} {(n - k)! \times k!} \]
二項式定理
二項式定理:設 \(n\) 是正整數,對於一切 \(x\) 和 \(y\)
\[{(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \]
常用形式
\[{(x + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k \]
等價形式
\[\begin{aligned} {(x + y)} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {n - k} x ^ k y ^{n - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {n - k} x ^ {n - k} y ^k \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ {n - k} y ^k \\ \end{aligned} \]
證明 1 ( 組合意義 / 組合分析 / 算二次 )
\[{(x + y)} ^ n = (x + y) \times (x + y) \times \cdots \times (x + y) \]
對於每一項 \(x ^ k y ^ {n - k}\),其含義就是在 \(n\) 個 \((x + y)\) 中選擇 \(k\) 個 \(x\)、\(n - k\) 個 \(y\),故有 \(\dbinom {n} {k}\) 中選法,即有 \(\dbinom {n} {k}\) 個 \(x ^ k y ^ {n - k}\)
證畢
證明 2 ( 數學歸納法 )
當 \(n = 1\) 時,公式顯然成立
假設公式對於正整數 \(n\) 成立,即證明公式對於 \(n + 1\) 也成立
即證
\[{(x + y)} ^ {n + 1} = \sum \limits _ {k = 0} ^ {n + 1} \dbinom {n} {k} x ^ k y ^ {n + 1 - k} \]
\[\begin{aligned} {(x + y)} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ {(x + y)} ^ {n + 1} & = (x + y) \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ & = x \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} + y \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ {k + 1} y ^{n - k} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ {k + 1} y ^{(n + 1) - (k + 1)} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k + 1 = 1} ^ {n + 1} \dbinom {n} {(k + 1) - 1} x ^ {k + 1} y ^{(n + 1) - (k + 1)} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k = 1} ^ {n + 1} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + x ^ {n + 1} + \sum \limits _ {k = 1} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} + y ^ {n + 1} \\ & = \dbinom {n + 1} {0} x ^ {n + 1} + \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + \sum \limits _ {k = 1} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} + \dbinom {n + 1} {n + 1} y ^ {n + 1} \\ \end{aligned} \]
由 \(\mathrm{Pascal}\) 公式 \(\dbinom {n + 1} {k} = \dbinom {n} {k - 1} + \dbinom {n} {k}\)(后面會證明),就可以把 \(k\) 相等的項合並了
\[\begin{aligned} {(x + y)} ^ {n + 1} & = \dbinom {n + 1} {0} x ^ {n + 1} + \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + \sum \limits _ {k = 1} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} + \dbinom {n + 1} {n + 1} y ^ {n + 1} \\ & = \dbinom {n + 1} {0} x ^ {n + 1} y ^ 0 + \sum \limits _ {k = 1} ^ {n} \dbinom {n + 1} {k} x ^ k y ^{n + 1 - k} + \dbinom {n + 1} {n + 1} x ^ 0 y ^ {n + 1} \\ & = \sum \limits _ {k = 0} ^ {n + 1} \dbinom {n + 1} {k} x ^ k y ^{n + 1 - k} \\ \end{aligned} \]
證畢
組合恆等式
公式 1
\[\dbinom {n} {k} = \dbinom {n} {n - k} \]
證明 ( 組合意義 )
\(n\) 個小球選擇 \(k\) 個留下,等價於選擇 \(n - k\) 個不留下
證畢
公式 2
\[\dbinom {n} {k} = \dfrac {n} {k} \dbinom {n - 1} {k - 1} \]
證明 ( 公式法 )
\[\begin{aligned} \dbinom {n} {k} & = \dfrac {n!} {(n - k)! \times k!} \\ & = \dfrac {n} {k} \times \dfrac {(n - 1)!} {(n - k)! \times k!} \\ & = \dfrac {n} {k} \times \dfrac {(n - 1)!} {[(n - 1) - (k - 1)]! \times k!} \\ & = \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ \end{aligned} \]
證畢
公式 3 ( Pascal 公式 )
\[\dbinom {n} {k} = \dbinom {n - 1} {k} + \dbinom {n - 1} {k - 1} \]
證明 ( 組合意義 )
\(n\) 個小球中選擇 \(k\) 個,等價於 ( 不選最后一個,前 \(n - 1\) 個中選擇 \(k\) 個 ) 和 ( 選最后一個,前 \(n - 1\) 個中選擇 \(k - 1\) 個 ) 的並集
公式 4
\[\sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} = 2 ^ n \]
證明 ( 公式法 )
由二項式定理得 \({(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k}\),令 \(x = y = 1\),則等式變為
\[\begin{aligned} {(1 + 1)} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} \times 1 ^ k \times 1 ^{n - k} \\ 2 ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} \\ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} & = 2 ^ n \\ \end{aligned} \]
證畢
公式 5
\[\sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} = 0 \]
證明 ( 公式法 )
由二項式定理得 \({(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k}\),令 \(x = -1\)、\(y = 1\),則等式變為
\[\begin{aligned} {[(-1) + 1]} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} \times {(-1)} ^ k \times 1 ^{n - k} \\ 0 ^ n & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \dbinom {n} {k} \\ \sum \limits _ {k = 0} ^ n {(-1)} ^ k \dbinom {n} {k} & = 0 \\ \end{aligned} \]
證畢
公式 6 ( 變下項求和 )
\[\sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} = n 2 ^ {n - 1} \]
證明 1 ( 組合意義 )
- 公式含義:選擇 \(n\) 個小球的所有選法中每個小球出現的次數和
- 右式含義:\(n\) 個小球,每個小球被選擇的次數是 \(2 ^ {n - 1}\)
- 左式含義:對於所有選法中選擇 \(k\) 個小球情況,其對答案的貢獻是 \(k\),共有 \(\dbinom {n} {k}\) 種選法
顯然,三種含義等價
證畢
證明 2 ( 公式法 )
由 公式 2 \(\dbinom {n} {k} = \dfrac {n} {k} \dbinom {n - 1} {k - 1}\) 得:
\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} & = 0 \dbinom {n} {k} + \sum \limits _ {k = 1} ^ {n} k \times \dbinom {n} {k} \\ & = 0 + \sum \limits _ {k = 1} ^ {n} k \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ & = \sum \limits _ {k = 1} ^ {n} n \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 1} ^ {n} \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ \end{aligned} \]
由 公式 4 \(\sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} = 2 ^ n\) 得 \(\sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} = 2 ^ {n - 1}\),故
\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} & = n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ & = n 2 ^ {n - 1} \\ \end{aligned} \]
證畢
公式 7
\[\sum \limits _ {k = 0} ^ {n} k ^ 2 \dbinom {n} {k} = n (n + 1) 2 ^ {n - 2} \]
證明 1 ( 組合意義 )
\[\begin {aligned} n (n + 1) 2 ^ {n - 2} & = n (n - 1) 2 ^ {n - 2} + n \times 2 \times 2 ^ {n - 2} \\ & = n (n - 1) 2 ^ {n - 2} + n \times 2 ^ {n - 1} \end {aligned} \]
- 左式含義:有 \(n\) 個不同的數,對於選擇 \(k\) 個不同的數的情況,可以組成 \(k ^ 2\) 種有序數對,每種有序數對 \((a, b)\) 對答案的貢獻為 \(1\),一起對答案的貢獻就是 \(k ^ 2\),選擇 \(k\) 個不同的數有 \(\dbinom {n} {k}\) 種選法
- 右式含義:考慮每種有序數對 \((a, b)\) 對答案的貢獻;若 \(a \neq b\),對於其它 \(n - 2\) 個數的每種選法中,有 \(1\) 的貢獻,有 \(2 ^ {n - 2}\) 種選法;若 \(a = b\),對於其它 \(n - 2\) 個數的每種選法中,有 \(1\) 的貢獻,有 \(2 ^ {n - 1}\) 種選法
右式含義中的兩種情況的並集等於左式含義中的情況,故兩種含義等價
證畢
證明 2 ( 公式法 )
由 公式 2 \(\dbinom {n} {k} = \dfrac {n} {k} \dbinom {n - 1} {k - 1}\) 得:
\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k ^ 2 \dbinom {n} {k} & = 0 + \sum \limits _ {k = 1} ^ {n} k ^ 2 \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ & = \sum \limits _ {k = 1} ^ {n} k ^ 2 \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ & = \sum \limits _ {k = 1} ^ {n} k \times n \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 1} ^ {n} k \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 0} ^ {n - 1} (k + 1) \dbinom {n - 1} {k} \\ & = n \sum \limits _ {k = 0} ^ {n - 1} k \dbinom {n - 1} {k} + n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ \end{aligned} \]
由 公式 6 \(\sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} = n 2 ^ {n - 1}\) 得:\(\sum \limits _ {k = 0} ^ {n - 1} k \dbinom {n - 1} {k} = (n - 1) 2 ^ {n - 2}\)
由 公式 4 \(\sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} = 2 ^ n\) 得:\(\sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} = 2 ^ {n - 1}\)
故原式可化為:
\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k ^ 2 \dbinom {n} {k} & = n \sum \limits _ {k = 0} ^ {n - 1} k \dbinom {n - 1} {k} + n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ & = n (n - 1) 2 ^ {n - 2} + n 2 ^ {n - 1} \\ & = n (n - 1) 2 ^ {n - 2} + n \times 2 \times 2 ^ {n - 2} \\ & = n (n + 1) 2 ^ {n - 2} \\ \end{aligned} \]
證畢
公式 8 ( 變上項求和 )
\[\sum \limits _ {l = 0} ^ n \dbinom {l} {k} = \dbinom {n + 1} {k + 1} n, k \in N \]
證明 ( 組合意義 )
在 \(n + 1\) 個小球中選擇 \(k + 1\) 個
對於所有選法中,考慮選擇的最后一個小球的位置為 \(l + 1(0 \leq l \leq n)\) 時對答案的貢獻,就是在前 \(l\) 個小球中選擇 \(k\) 的方案數
因此,對於所有的 \(l\) 屬於的集合的並集,就等於在 \(n + 1\) 個小球中選擇 \(k + 1\) 個的集合
證畢
公式 9
\[\dbinom {n} {r} \dbinom {r} {k} = \dbinom {n} {k} \dbinom {n - k} {r - k} \]
證明 ( 組合意義 )
把 \(n\) 個球分成 \(3\) 堆,使得第 \(1\) 堆有 \(k\) 個球、第 \(2\) 堆有 \(r - k\) 個球、第 \(3\) 堆有 \(n - r\) 個球 的方案數
- 左式含義:先從這 \(n\) 個球中選出 \(r\) 個球,把剩下的 \(n - r\) 個分到第 \(3\) 堆;再從這 \(r\) 個中選擇 \(k\) 個分到第 \(1\) 堆,剩下的 \(r - k\) 給分到第 \(2\) 堆
- 右式含義:先從這 \(n\) 個球中選出 \(k\) 個球分到第 \(1\) 堆;再從剩下的 \(n - k\) 個中選擇 \(r - k\) 個分到第 \(2\) 堆,剩下的 \(n - r\) 給分到第 \(3\) 堆
顯然,兩種含義不會重復,並且兩種含義等價
證畢
公式 10
\[\sum \limits _ {k = 0} ^ {r} \dbinom {m} {k} \dbinom {n} {r - k} = \dbinom {m + n} {r} \]
證明 ( 組合意義 )
- 右式含義:從 \(m + n\) 個球中選出 \(r\) 個球
- 左式含義:從前 \(m\) 個球中選出 \(k\) 個球和從后 \(n\) 個球中選出 \(r - k\) 個球的並集的並集(第一個並集對於每個 \(k\) 的方案數,第二個並集對於 \(\sum\))
顯然,兩種含義等價
證畢
公式 11
\[\sum \limits _ {k = 0} ^ {m} \dbinom {m} {k} \dbinom {n} {k} = \dbinom {m + n} {m} \]
證明 ( 公式法 )
\[\begin{aligned} \sum \limits _ {k = 0} ^ {m} \dbinom {m} {k} \dbinom {n} {k} & = \sum \limits _ {k = 0} ^ {m} \dbinom {m} {m - k} \dbinom {n} {k} \\ \end{aligned} \]
由 公式 10 \(\sum \limits _ {k = 0} ^ {r} \dbinom {m} {k} \dbinom {n} {r - k} = \dbinom {m + n} {r}\) 得 \(\sum \limits _ {k = 0} ^ {r} \dbinom {m} {r - k} \dbinom {n} {k} = \dbinom {n + m} {r}\),令 \(r = m\) 得:\(\sum \limits _ {k = 0} ^ {m} \dbinom {m} {m - k} \dbinom {n} {k} = \dbinom {m + n} {m}\),故
\[\begin{aligned} \sum \limits _ {k = 0} ^ {m} \dbinom {m} {k} \dbinom {n} {k} & = \sum \limits _ {k = 0} ^ {m} \dbinom {m} {m - k} \dbinom {n} {k} \\ & = \dbinom {m + n} {m} \\ \end{aligned} \]
證畢
課后習題
習題 1
\({(3x - 2y)} ^ {18}\) 的展開式中,\(x ^ 5 y ^ {13}\) 的系數是多少?\(x ^ 8 y ^ 9\) 的系數是多少?
答案
解:
\(x ^ 5 y ^ {13}\) 的系數為 \(\dbinom {18} {5} (3 ^ 5 + 2 ^ {13})\),\(x ^ 8 y ^ 9\) 的系數為 \(0\)
習題 2
- 用二項式定理證明:\(3 ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} 2 ^ k\)
- 對於任意實數 \(r\) 求 $ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} r ^ k$
答案
-
證:
由 二項式定理常用形式 得:\({(x + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k\)
令 \(x = 2\),則等式變為 \({(2 + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} 2 ^ k\),即 \(3 ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} 2 ^ k\)
證畢
-
解:
由 二項式定理常用形式 得:$ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} r ^ k = {(r + 1)} ^ n$
習題 3
用 二項式定理 證明:\(2 ^ n = \sum \limits _ {k = 0} ^ {n} {(- 1)} ^ k \dbinom {n} {k} 3 ^ {n - k}\)
答案
證:
由 二項式定理 得:\({(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k}\)
令 \(x = -1, y = 3\),則等式變為 \({[(-1) + 3]} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-1)} ^ k 3 ^{n - k}\)
即 \(2 ^ n = \sum \limits _ {k = 0} ^ {n} {(- 1)} ^ k \dbinom {n} {k} 3 ^ {n - k}\)
證畢
習題 4
求 $ \sum \limits _ {k = 1} ^ n {(-1)} ^ k \dbinom {n} {k} {10} ^ k$
答案
解:
$ \sum \limits _ {k = 0} ^ n {(-1)} ^ k \dbinom {n} {k} {10} ^ k = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-10)} ^ k$
由 二項式定理常用形式 得:\({(x + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k\)
令 \(x = -10\),則等式變為 \({[(-10) + 1]} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-10)} ^ k\)
故 $ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-10)} ^ k = {(-9)} ^ n$
習題 5
用組合意義證明 \(\dbinom {n} {k} - \dbinom {n - 3} {k} = \dbinom {n - 1} {k - 1} + \dbinom {n - 2} {k - 1} + \dbinom {n - 3} {k - 1}\)
答案
證:
選擇 \(n\) 個小球中的 \(k\) 個
- 左式含義:( 總方案數 ) \(-\) ( 前 \(3\) 個小球都不選的方案數 ),即表示至少選擇前 \(3\) 個小球中的一個的方案數
- 右式含義:( 選擇第 \(1\) 個小球的方案數 ) \(+\) ( 不選擇第 \(1\) 個小球,選擇第 \(2\) 個小球的方案數 ) \(+\) ( 不選擇第 \(1\) 個小球和第 \(2\) 個小球,選擇第 \(3\) 個小球的方案數 )
顯然,這兩個含義是等價的
證畢
習題 6
設 \(n\) 是正整數,請證明:
\[ \sum \limits _ {k = 0} ^ n {(-1)} ^ k {\dbinom {n} {k}} ^ 2 = \begin{cases} 0, n = 2m + 1, m \in N_+ \\ {(-1)} ^ m \dbinom {2m} {m}, n = 2m, m \in N_+ \\ \end{cases} \]
答案
證:
如果 \(n\) 是奇數,則 \(k\) 和 \(n - k\) 是不同奇偶的
\(\therefore\) \({(-1)} ^ k\) 和 \({(-1)} ^ {n - k}\) 是一正一負的
\[\begin{aligned} \sum \limits _ {k = 0} ^ n {(-1)} ^ k {\dbinom {n} {k}} ^ 2 & = \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} {k} + \sum \limits _ {k = m + 1} ^ {n} {(-1)} ^ k \dbinom {n} {k} \\ & = \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} {k} - \sum \limits _ {k = m + 1} ^ {n} {(-1)} ^ {n - k} \dbinom {n} {n - k} \\ & = \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} {k} - \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} k \\ & = 0 \\ \end{aligned} \]
如果 \(n\) 是偶數,則 \(k\) 和 \(n - k\) 是同奇偶的
\(\therefore\) \({(-1)} ^ k = {(-1)} ^ {n - k}\)
由 二項式定理 得:
\[\begin{aligned} {(x + 1)} ^ n & = \sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} x ^ k \\ {(x - 1)} ^ n & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ {n - k} \dbinom {n} {k} x ^ k \\ & =\sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ k \\ {(x ^ 2 - 1)} ^ n & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ {n - k} \dbinom {n} {k} {(x ^ 2)} ^ k \\ & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} {(x ^ 2)} ^ k \\ & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ {2k} \\ \end{aligned} \]
故可列等式 \({(x + 1)} ^ n {(x - 1)} ^ n = {(x ^ 2 - 1) ^ n}\)
\[\begin{aligned} {(x + 1)} ^ n {(x - 1)} ^ n & = {(x ^ 2 - 1) ^ n} \\ \sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} x ^ k \times \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ k & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ {2k} \\ \end{aligned} \]
\(\because\) 左右兩邊多項式相等
\(\therefore \forall i\),\(x ^ i\) 的系數相等
令 \(i = n = 2m\),即考慮 \(x ^ n\) 的系數
\[\begin{aligned} \sum \limits _ {k = 0} ^ {n} \dbinom {n} {n - k} x ^ {n - k} \times {(-1)} ^ k \dbinom {n} {k} x ^ k & = {(-1)} ^ m \dbinom {n} {m} x ^ n \\ \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ {n - k} \times \dbinom {n} {k} x ^ k & = {(-1)} ^ m \dbinom {n} {m} x ^ n \\ \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k {\dbinom {n} {k}} ^ 2 x ^ n & = {(-1)} ^ m \dbinom {n} {m} x ^ n \\ \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k {\dbinom {n} {k}} ^ 2 x ^ n & = {(-1)} ^ m \dbinom {2m} {m} x ^ n \\ \end{aligned} \]
同時約去 \(x ^ n\),得
\[\begin{aligned} \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k {\dbinom {n} {k}} ^ 2 & = {(-1)} ^ m \dbinom {2m} {m} \\ \end{aligned} \]
證畢
習題 7
化簡 \(\dbinom {n} {k} + 3 \dbinom {n} {k - 1} + 3 \dbinom {n} {k - 2} + \dbinom {n} {k - 3}\)
答案
證:
$\dbinom {n} {k} + 3 \dbinom {n} {k - 1} + 3 \dbinom {n} {k - 2} + \dbinom {n} {k - 3} = \dbinom {3} {0} \dbinom {n} {k} + \dbinom {3} {1} \dbinom {n} {k - 1} + \dbinom {3} {2} \dbinom {n} {k - 2} + \dbinom {3} {3} \dbinom {n} {k - 3} = $
有 \(2\) 堆小球,第 \(1\) 堆有 \(3\) 個,第 \(2\) 堆有 \(n\) 個
在 \(n + 3\) 個小球中選擇 \(k\) 個,等價於 ( 在第 \(1\) 堆選擇 \(0\) 個,第 \(2\) 堆選擇 \(k\) 個 ) + ( 在第 \(1\) 堆選擇 \(1\) 個,第 \(2\) 堆選擇 \(k - 1\) 個 ) + ( 在第 \(1\) 堆選擇 \(2\) 個,第 \(2\) 堆選擇 \(k - 2\) 個 ) + ( 在第 \(1\) 堆選擇 \(3\) 個,第 \(2\) 堆選擇 \(k - 3\) 個)
證畢
習題 8
證明 \(\dbinom {r} {k} = \dfrac {r} {r - k} \dbinom {r - 1} {k}\),其中 \(r \in R\),\(k \in Z\),\(r \neq k\)
答案
本題需要使用牛頓二項式,不符合本博客的討論范圍
習題 9
求:\(1 - \dfrac {1} {2} \dbinom {n} {1} + \dfrac {1} {3} \dbinom {n} {2} - \dfrac {1} {4} \dbinom {n} {3} + \cdots + {(-1)} ^ n \dfrac {1} {n + 1} \dbinom {n} {n}\)
答案
解:
\[\begin{aligned} 1 - \dfrac {1} {2} \dbinom {n} {1} + \dfrac {1} {3} \dbinom {n} {2} - \dfrac {1} {4} \dbinom {n} {3} + \cdots + {(-1)} ^ n \dfrac {1} {n + 1} \dbinom {n} {n} & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {k + 1} \dbinom {n} {k} \\ \end{aligned} \]
由 公式 2 \(\dbinom {n + 1} {k + 1} = \dfrac {n + 1} {k + 1} \dbinom {n} {k}\) 得:\(\dbinom {n} {k} = \dfrac {k + 1} {n + 1} \dbinom {n + 1} {k + 1}\)
\[\begin{aligned} \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {k + 1} \dbinom {n} {k} & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {k + 1} \times \dfrac {k + 1} {n + 1} \dbinom {n + 1} {k + 1} \\ & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {n + 1} \dbinom {n + 1} {k + 1} \\ & = \dfrac { \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dbinom {n + 1} {k + 1}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 0} ^ n {(-1)} ^ {k + 1} \times \dbinom {n + 1} {k + 1}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 1} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 0} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k} - {(-1)} ^ 0 \times \dbinom {n + 1} {0}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 0} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k} - 1} {n + 1} \\ \end{aligned} \]
由 公式 5 $ \sum \limits _ {k = 0} ^ n {(-1)}^k \dbinom {n} {k} = 0$ 得:$ \sum \limits _ {k = 0} ^ {n + 1} {(-1)}^k \dbinom {n + 1} {k} = 0$
\[\begin{aligned} -\dfrac { \sum \limits _ {k = 0} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k} - 1} {n + 1} & = - \dfrac {0 - 1} {n + 1} \\ & = - \dfrac {-1} {n + 1} \\ & = \dfrac {1} {n + 1} \\ \end{aligned} \]
\(\therefore 1 - \dfrac {1} {2} \dbinom {n} {1} + \dfrac {1} {3} \dbinom {n} {2} - \dfrac {1} {4} \dbinom {n} {3} + \cdots + {(-1)} ^ n \dfrac {1} {n + 1} \dbinom {n} {n} = \dfrac {1} {n + 1}\)
習題 10
- 證明:\(\dbinom {n + 1} {k + 1} = \dbinom {0} {k} + \dbinom {1} {k} + \cdots + \dbinom {n - 1} {k} + \dbinom {n} {k}\)
- 證明:\(m ^ 2 = 2 \dbinom {m} {2} + \dbinom {m} {1}\)
答案
- 證:
\(\dbinom {n + 1} {k + 1} = \dbinom {0} {k} + \dbinom {1} {k} + \cdots + \dbinom {n - 1} {k} + \dbinom {n} {k} = \sum \limits _ {i = 0} ^ {n} \dbinom {i} {k}\)
在 \(n + 1\) 個小球中選擇 \(k + 1\) 個的方案數,等價於 ( 枚舉選擇的最后一個小球的位置,在這個小球前選擇 \(k\) 個小球 ) 的方案數之和
證畢
- 證:
( 在 \(m\) 個不同的數中先后選擇 \(2\) 個可以相同的數的方案數,組成一個有序數對 ),等價於 ( 選擇不同的 \(2\) 個數組成 \(2\) 個有序數對 ) 和 ( 選擇 \(1\) 個數組成 \(1\) 個有序數對 ) 的方案數之和
證畢
習題 11
求整數 \(a, b, c\),使得對於所有的 \(m\),滿足:\(m ^ 3 = a \dbinom {m} {3} + b \dbinom {m} {2} + c \dbinom {m} {1}\)
答案
解:
( 在 \(m\) 個不同的數中先后選擇 \(3\) 個可以相同的數的方案數,組成一個有序數對 ),等價於 ( 選擇不同的 \(3\) 個數組成 \(6\) 個有序數對 )、( 選擇不同的 \(2\) 個數組成 \(6\) 個有序數對 )、( 選擇 \(1\) 個數組成 \(1\) 個有序數對 ) 的方案數之和
\(\therefore m ^ 3 = 6 \times \dbinom {m} {3} + 6 \times \dbinom {m} {2} + 1 \times \dbinom {m} {1}\)
\(\therefore a = 6, b = 6, c = 1\)
習題 12
設 \(n\) 是整數,請證明 \(\sum \limits _ {k = 1} ^ {n} \dbinom {n} {k} \dbinom {n} {k - 1} = \dfrac {1} {2} \dbinom {2n + 2} {n + 1} - \dbinom {2n} {n}\)
答案
證:
\[\begin {aligned} \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k} \dbinom {n} {k - 1} & = \sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n} {k - 1} \\ \dfrac {1} {2} \dbinom {2n + 2} {n + 1} - \dbinom {2n} {n} & = \dfrac {1} {2} \times \dfrac {2n + 2} {n + 1} \dbinom {2n + 1} {n} - \dbinom {2n} {n} \\ & = \dfrac {1} {2} \times 2 \dbinom {2n + 1} {n} - \dbinom {2n} {n} \\ & = \dbinom {2n + 1} {n} - \dbinom {2n} {n} \\ & = \dbinom {2n} {n - 1} \\ \end{aligned} \]
即證 \(\sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n} {k - 1} = \dbinom {2n} {n - 1}\)
- 右式含義:在 \(2n\) 個小球中選擇 \(n - 1\) 個的方案數
- 左式含義:( 在前 \(n\) 個小球中選擇 \(n - k\) 個 ) 和 ( 在后 \(n\) 個小球中選擇 \(k - 1\) 個 ) 的方案數之和;\(\because 1 \leq k \leq n\),\(\therefore n - k, k - 1 \geq 0\),故此含義成立
顯然,左右兩式等價
證畢
習題 13
設 \(n\) 是整數,請用組合意義證明 \(\sum \limits _ {k = 1} ^ {n} k {\dbinom {n} {k}} ^ 2 = n \dbinom {2n - 1} {n - 1}\)
答案
證:
\[\begin {aligned} \sum \limits _ {k = 1} ^ {n} k {\dbinom {n} {k}} ^ 2 & = \sum \limits _ {k = 1} ^ {n} k \dbinom {n} {k} \dbinom {n} {n - k} \\ & = \sum \limits _ {k = 1} ^ {n} k \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \dbinom {n} {n - k} \\ & = \sum \limits _ {k = 1} ^ {n} n \dbinom {n - 1} {k - 1} \dbinom {n} {n - k} \\ & = n \sum \limits _ {k = 1} ^ {n} \dbinom {n - 1} {k - 1} \dbinom {n} {n - k} \\ & = n \sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n - 1} {k - 1} \\ \end{aligned} \]
即證 \(n \sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n - 1} {k - 1} = n \dbinom {2n - 1} {n - 1}\)
即證 \(\sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n - 1} {k - 1} = \dbinom {2n - 1} {n - 1}\)
- 右式含義:在 \(2n - 1\) 個小球中選擇 \(n - 1\) 個的方案數
- 左式含義:( 在前 \(n\) 個小球中選擇 \(n - k\) 個 ) 和 ( 在后 \(n - 1\) 個小球中選擇 \(k - 1\) 個 ) 的方案數之和;\(\because 1 \leq k \leq n\),\(\therefore n - k, k - 1 \geq 0\),故此含義成立
顯然,左右兩式等價
證畢