二項式定理


公式:

$$(a+b)^{n} = C_{n}^{0}a^{n} + C_{n}^{1}a^{n-1}b + ... + C_{n}^{k}a^{n-k}b^{k}+ ... +C_{n}^{n}b^{n} = \sum_{k=0}^{n}C_{n}^{k}a^{n-k}b^{k}$$

稱為二項式定理,各項的系數為 $C_{n}^{k},k=0,1,2,...,n$,通項為 $C_{n}^{k}a^{n-k}b^{k}$。

可以采用數學歸納法來證明這個定理:

1)當 $n = 1$ 時,$(a+b)^{1} = \sum_{k=0}^{1}C_{1}^{k}a^{1-k}b^{k} = a + b$

2)設 $n = m$ 時,式子成立,即 $(a+b)^{m} = \sum_{k=0}^{m}C_{m}^{k}a^{m-k}b^{k}$

3)當 $n = m + 1$ 時,則有

$$(a+b)^{m+1} = (a + b)(a + b)^{m} = a(a + b)^{m} + b(a + b)^{m} = a\sum_{k=0}^{m}C_{m}^{k}a^{m-k}b^{k} + b\sum_{k=0}^{m}C_{m}^{k}a^{m-k}b^{k} \\
= a^{m+1} + \sum_{k=1}^{m}C_{m}^{k}a^{m-k+1}b^{k} + \sum_{k=1}^{m}C_{m}^{k-1}a^{m-k+1}b^{k} + b^{m+1} \\
= a^{m+1} + b^{m+1} + \sum_{k=1}^{m}C_{m+1}^{k}a^{m-k+1}b^{k} \\
= \sum_{k=0}^{m+1}C_{m+1}^{k}a^{m-k+1}b^{k}$$

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM