本文參考:https://zhuanlan.zhihu.com/p/39762178
設
是一個函數,它的輸入是向量
,輸出是向量
:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmNhc2VzJTdEK3lfMSUzRGZfMSUyOHhfMSUyQyU1Q2RvdHMlMkN4X24lMjklNUMlNUMreV8yJTNEZl8yJTI4eF8xJTJDJTVDZG90cyUyQ3hfbiUyOSU1QyU1QyU1Q2RvdHMlNUMlNUMreV9tJTNEZl9tJTI4eF8xJTJDJTVDZG90cyUyQ3hfbiUyOSU1Q2VuZCU3QmNhc2VzJTdE.png)
那么雅可比矩陣是一個m×n矩陣:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lN0IlNUNkaXNwbGF5c3R5bGUlNUNtYXRoYmYlN0JKJTdEKyUzRCU3QiU1Q2JlZ2luJTdCYm1hdHJpeCU3RCU3QiU1Q2RmcmFjJTdCJTVDcGFydGlhbCU1Q21hdGhiZiU3QmYlN0QlN0QlN0IlNUNwYXJ0aWFsK3hfJTdCMSU3RCU3RCU3RCUyNiU1Q2Nkb3RzKyUyNiU3QiU1Q2RmcmFjJTdCJTVDcGFydGlhbCU1Q21hdGhiZiU3QmYlN0QlN0QlN0IlNUNwYXJ0aWFsK3hfJTdCbiU3RCU3RCU3RCU1Q2VuZCU3QmJtYXRyaXglN0QlN0QlM0QlN0IlNUNiZWdpbiU3QmJtYXRyaXglN0QlN0IlNUNkZnJhYyU3QiU1Q3BhcnRpYWwrZl8lN0IxJTdEJTdEJTdCJTVDcGFydGlhbCt4XyU3QjElN0QlN0QlN0QlMjYlNUNjZG90cyslMjYlN0IlNUNkZnJhYyU3QiU1Q3BhcnRpYWwrZl8lN0IxJTdEJTdEJTdCJTVDcGFydGlhbCt4XyU3Qm4lN0QlN0QlN0QlNUMlNUMlNUN2ZG90cyslMjYlNUNkZG90cyslMjYlNUN2ZG90cyU1QyU1QyU3QiU1Q2RmcmFjJTdCJTVDcGFydGlhbCtmXyU3Qm0lN0QlN0QlN0IlNUNwYXJ0aWFsK3hfJTdCMSU3RCU3RCU3RCUyNiU1Q2Nkb3RzKyUyNiU3QiU1Q2RmcmFjJTdCJTVDcGFydGlhbCtmXyU3Qm0lN0QlN0QlN0IlNUNwYXJ0aWFsK3hfJTdCbiU3RCU3RCU3RCU1Q2VuZCU3QmJtYXRyaXglN0QlN0QlN0Q=.png)
由於矩陣描述了向量空間中的運動——變換,而雅可比矩陣看作是將點
轉化到點
,或者說是從一個n維的歐式空間轉換到m維的歐氏空間。
如果m = n, 可以定義雅可比矩陣
的行列式,也就是雅可比行列式(Jacobian determinant)。
在微積分換元中,也就是給出了 從x到y的n維體積的比率
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNybStkeV8xLi4uZHlfbiUzRCU3Q0olN0MrJTVDJTJDJTVDJTJDK2R4XzEuLi5keF9uKw==.png)
2.二維雅可比矩陣的幾何意義
在二維情況(有直觀的圖),雅可比行列式代表xy平面上的面積微元與uv平面上的面積微元的比值。
設
,雅可比行列式是:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNtYXRoYmYrSiUzRCU3QyU1Q2ZyYWMlN0IlNUNwYXJ0aWFsJTI4eCUyQ3klMjklN0QlN0IlNUNwYXJ0aWFsJTI4dSUyQ3YlMjklN0QlN0MrJTNEKyU1Q2JlZ2luJTdCdm1hdHJpeCU3RCt4X3UrJTI2K3hfdislNUMlNUMreV91KyUyNit5X3YrJTVDJTVDKyU1Q2VuZCU3QnZtYXRyaXglN0Q=.png)

如圖所示:dA代表dx和dy張成的平行四邊形的面積,如果du和dv充分接近於0,那么dA:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1kQSUzRGR4ZHklM0QlN0MlNUNmcmFjJTdCJTVDcGFydGlhbCUyOHglMkN5JTI5JTdEJTdCJTVDcGFydGlhbCUyOHUlMkN2JTI5JTdEJTdDZHUrZHY=.png)
二重積分換元:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNpaW50X0QrZiUyOHglMkN5JTI5K2R4ZHkrJTNEKyU1Q2lpbnRfJTdCRCUyNyU3RGYlNUJ4JTI4dSUyQ3YlMjklMkN5JTI4dSUyQ3YlMjklNUQrJTdDJTVDZnJhYyU3QiU1Q3BhcnRpYWwlMjh4JTJDeSUyOSU3RCU3QiU1Q3BhcnRpYWwlMjh1JTJDdiUyOSU3RCU3Q2R1ZHYr.png)
n維情況以此類推。
