本文参考:https://zhuanlan.zhihu.com/p/39762178
设
是一个函数,它的输入是向量
,输出是向量
:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmNhc2VzJTdEK3lfMSUzRGZfMSUyOHhfMSUyQyU1Q2RvdHMlMkN4X24lMjklNUMlNUMreV8yJTNEZl8yJTI4eF8xJTJDJTVDZG90cyUyQ3hfbiUyOSU1QyU1QyU1Q2RvdHMlNUMlNUMreV9tJTNEZl9tJTI4eF8xJTJDJTVDZG90cyUyQ3hfbiUyOSU1Q2VuZCU3QmNhc2VzJTdE.png)
那么雅可比矩阵是一个m×n矩阵:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lN0IlNUNkaXNwbGF5c3R5bGUlNUNtYXRoYmYlN0JKJTdEKyUzRCU3QiU1Q2JlZ2luJTdCYm1hdHJpeCU3RCU3QiU1Q2RmcmFjJTdCJTVDcGFydGlhbCU1Q21hdGhiZiU3QmYlN0QlN0QlN0IlNUNwYXJ0aWFsK3hfJTdCMSU3RCU3RCU3RCUyNiU1Q2Nkb3RzKyUyNiU3QiU1Q2RmcmFjJTdCJTVDcGFydGlhbCU1Q21hdGhiZiU3QmYlN0QlN0QlN0IlNUNwYXJ0aWFsK3hfJTdCbiU3RCU3RCU3RCU1Q2VuZCU3QmJtYXRyaXglN0QlN0QlM0QlN0IlNUNiZWdpbiU3QmJtYXRyaXglN0QlN0IlNUNkZnJhYyU3QiU1Q3BhcnRpYWwrZl8lN0IxJTdEJTdEJTdCJTVDcGFydGlhbCt4XyU3QjElN0QlN0QlN0QlMjYlNUNjZG90cyslMjYlN0IlNUNkZnJhYyU3QiU1Q3BhcnRpYWwrZl8lN0IxJTdEJTdEJTdCJTVDcGFydGlhbCt4XyU3Qm4lN0QlN0QlN0QlNUMlNUMlNUN2ZG90cyslMjYlNUNkZG90cyslMjYlNUN2ZG90cyU1QyU1QyU3QiU1Q2RmcmFjJTdCJTVDcGFydGlhbCtmXyU3Qm0lN0QlN0QlN0IlNUNwYXJ0aWFsK3hfJTdCMSU3RCU3RCU3RCUyNiU1Q2Nkb3RzKyUyNiU3QiU1Q2RmcmFjJTdCJTVDcGFydGlhbCtmXyU3Qm0lN0QlN0QlN0IlNUNwYXJ0aWFsK3hfJTdCbiU3RCU3RCU3RCU1Q2VuZCU3QmJtYXRyaXglN0QlN0QlN0Q=.png)
由于矩阵描述了向量空间中的运动——变换,而雅可比矩阵看作是将点
转化到点
,或者说是从一个n维的欧式空间转换到m维的欧氏空间。
如果m = n, 可以定义雅可比矩阵
的行列式,也就是雅可比行列式(Jacobian determinant)。
在微积分换元中,也就是给出了 从x到y的n维体积的比率
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNybStkeV8xLi4uZHlfbiUzRCU3Q0olN0MrJTVDJTJDJTVDJTJDK2R4XzEuLi5keF9uKw==.png)
2.二维雅可比矩阵的几何意义
在二维情况(有直观的图),雅可比行列式代表xy平面上的面积微元与uv平面上的面积微元的比值。
设
,雅可比行列式是:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNtYXRoYmYrSiUzRCU3QyU1Q2ZyYWMlN0IlNUNwYXJ0aWFsJTI4eCUyQ3klMjklN0QlN0IlNUNwYXJ0aWFsJTI4dSUyQ3YlMjklN0QlN0MrJTNEKyU1Q2JlZ2luJTdCdm1hdHJpeCU3RCt4X3UrJTI2K3hfdislNUMlNUMreV91KyUyNit5X3YrJTVDJTVDKyU1Q2VuZCU3QnZtYXRyaXglN0Q=.png)

如图所示:dA代表dx和dy张成的平行四边形的面积,如果du和dv充分接近于0,那么dA:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1kQSUzRGR4ZHklM0QlN0MlNUNmcmFjJTdCJTVDcGFydGlhbCUyOHglMkN5JTI5JTdEJTdCJTVDcGFydGlhbCUyOHUlMkN2JTI5JTdEJTdDZHUrZHY=.png)
二重积分换元:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNpaW50X0QrZiUyOHglMkN5JTI5K2R4ZHkrJTNEKyU1Q2lpbnRfJTdCRCUyNyU3RGYlNUJ4JTI4dSUyQ3YlMjklMkN5JTI4dSUyQ3YlMjklNUQrJTdDJTVDZnJhYyU3QiU1Q3BhcnRpYWwlMjh4JTJDeSUyOSU3RCU3QiU1Q3BhcnRpYWwlMjh1JTJDdiUyOSU3RCU3Q2R1ZHYr.png)
n维情况以此类推。
