1 定義
- 無窮級數:\(\displaystyle \sum_{n = 1}^\infty u_n = u_1 + u_2 + \cdots + u_n + \cdots\)
- 部分和數列\(\{ S_n\}\),其中\(\displaystyle S_n = \sum_{ n= 1}^n u_n\)
- 無窮級數的和:\(\displaystyle S = \lim_{n \to \infty} S_n\),若\(S\)存在,則無窮級數收斂;\(S\)不存在,則無窮級數發散。
- 余部\(r_n\),若無窮級數收斂,\(\displaystyle \lim_{n \to \infty} r_n = 0\)。
- 絕對收斂:\(\displaystyle \sum_{n = 1}^\infty |u_n|\)和\(\displaystyle \sum_{n = 1}^\infty u_n\)都收斂;條件收斂:\(\displaystyle \sum_{n = 1}^\infty u_n\)收斂,而\(\displaystyle \sum_{n = 1}^\infty |u_n|\)發散。
2 性質
- 若級數\(\displaystyle \sum_{n = 1}^\infty u_n\)收斂於和\(S\),則級數\(\displaystyle \sum_{n = 1}^\infty ku_n\)收斂於和\(kS\)。
- 若級數\(\displaystyle \sum_{n = 1}^\infty u_n, \displaystyle \sum_{n = 1}^\infty v_n\)分別收斂於和\(S, \sigma\),則級數\(\displaystyle \sum_{n = 1}^\infty (u_n \pm v_n)\)收斂於\(S \pm \sigma\)。
- 在級數中去掉、添加、改變有限項,級數的收斂性不變。
- 如果級數收斂,則對這個級數中的項任意添加括號形成的新級數仍收斂。
- 若級數\(\displaystyle \sum_{n = 1}^\infty u_n\)收斂,則其一般項趨向於零。\(\displaystyle \lim_{n \to \infty} u_n = 0\).
- 絕對收斂的級數一定收斂。條件收斂的級數的所有正項(或負項)組成的級數一定發散。
- 補充:柯西審斂原理 級數\(\displaystyle \sum_{n = 1}^\infty u_n\)收斂的充要條件為對於任意給定的正數\(\varepsilon\),總存在正整數\(N\),使得當\(n \gt N\)時,對於任意的正整數\(p\),都有\(|u_{n+1} + u_{n+2} + \cdots + u_{n+p}| \lt \varepsilon\)成立。
- 補充:設級數\(\displaystyle \sum_{n = 1}^\infty u_n, \sum_{n = 1}^\infty v_n\)都絕對收斂,其和分別是\(S, \sigma\),則它們的柯西乘積 \(u_1 v_1 + (u_1 v_2 + u_2 v_1) + \cdots + (u_1 v_n + u_2 v_{n-1} + \cdots + u_n v_1) + \cdots\) 也絕對收斂,且其和為 \(S\sigma\)。
3 常數項級數
正項級數
-
正項級數\(\displaystyle \sum_{n = 1}^\infty u_n\)收斂的充要條件是它的部分和數列\(\{S_n\}\)有界。
-
比較審斂法:若\(0 \le u_n \le v_n\),則\(\displaystyle \sum_{n = 1}^\infty v_n\)收斂,\(\implies \displaystyle \sum_{n = 1}^\infty u_n\)收斂;\(\displaystyle \sum_{n = 1}^\infty u_n\)發散,\(\implies \displaystyle \sum_{n = 1}^\infty v_n\)發散。
設\(\displaystyle \lim_{n \to \infty} \cfrac {u_n}{v_n} = l \quad (0 \le l \le +\infty)\),(1)\(0 \lt l \lt +\infty\),兩級數同斂散性;(2)\(l = 0\),則\(\displaystyle \sum_{n = 1}^\infty v_n\)收斂,\(\implies \displaystyle \sum_{n = 1}^\infty u_n\)收斂;(3)\(l = +\infty\),則\(\displaystyle \sum_{n = 1}^\infty u_n\)發散,\(\implies \displaystyle \sum_{n = 1}^\infty v_n\)發散。
-
比值審斂法:\(\displaystyle \lim_{n \to \infty} \cfrac {u_{n+1}}{u_n} = \rho\),\(\rho \lt 1\),收斂;\(\rho \gt 1\),發散;\(\rho = 1\),此方法失效。
-
根值審斂法:\(\displaystyle \lim_{n \to \infty} \sqrt[n]{u_n} = \rho\),\(\rho \lt 1\),收斂;\(\rho \gt 1\),發散;\(\rho = 1\),此方法失效。
-
極限審斂法:若\(\displaystyle \lim_{n \to \infty} nu_m = l \gt 0\),則級數發散;若\(p \gt 1\)且\(\displaystyle \lim_{n \to \infty} n^p u_n = l \ \ (0 \le l \lt +\infty)\),則級數收斂。
-
對數判別法:\(\displaystyle \lim_{n \to \infty} \cfrac {\ln {\cfrac 1{u_n}}}{\ln n} = p\),\(p \gt 1\),收斂;\(p \lt 1\),發散;\(p = 1\),此方法失效。
交錯級數
萊布尼茨定理:如果級數\(\displaystyle \sum_{n = 1}^{\infty} (-1)^{n-1} u_n\)滿足:\(u_n \ge u_{n+1}\),\(\displaystyle \lim_{n \to \infty} u_n = 0\),則級數收斂,且其和\(S \lt u_1\) 。
4 冪級數
概念:函數項級數、收斂點、和函數
定義
- 冪級數\(\displaystyle \sum_{n = 0}^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \cdots\)
- 若級數\(\displaystyle \sum_{n = 0}^\infty a_n x^n\)當\(x = x_0(x_0 \neq 0)\)時收斂,那么適合不等式\(|x| \lt |x_0|\)的一切\(x\)使這個冪級數絕對收斂。反之,若級數\(\displaystyle \sum_{n = 0}^\infty a_n x^n\)當\(x = x_0(x_0 \neq 0)\)時發散,那么適合不等式\(|x| \gt |x_0|\)的一切\(x\)使這個冪級數發散。
- 冪級數收斂的三種情況:
- 僅在\(x = 0\)處收斂,\(x \neq 0\)時發散;
- 對於\(x \in (-\infty, +\infty)\)都收斂且絕對收斂;
- 對於\(x \in (-R, +R)\)時收斂且絕對收斂,之外的發散。\(R\)為收斂半徑。
- 一個冪級數的收斂半徑總存在,包含\(0, +\infty\)。
- 若\(\displaystyle \lim_{n \to \infty} \left| \cfrac {a_{n+1}}{a_n} \right| = \rho\),那么冪級數的收斂半徑\(R = \begin{cases} \cfrac 1\rho & \rho \neq 0 \\ +\infty & \rho = 0 \\ 0 & \rho = +\infty \\ \end{cases}\)。
- 若\(\displaystyle \lim_{n \to \infty} \sqrt[n]{\left| a_n \right|} = \rho\),那么冪級數的收斂半徑\(R = \begin{cases} \cfrac 1\rho & \rho \neq 0 \\ +\infty & \rho = 0 \\ 0 & \rho = +\infty \\ \end{cases}\)。
性質
- \(\displaystyle \sum_{n = 0}^\infty a_n x^n \pm \sum_{n = 0}^\infty b_n x^n = \sum_{n = 0}^\infty (a_n \pm b_n)x^n = S_1(x) \pm S_2(x) \quad x\in (-R, +R)\)
- \(\displaystyle (\sum_{n = 0}^\infty a_n x^n)(\sum_{n = 0}^\infty b_n x^n) = \sum_{n = 0}^\infty (a_0 b_n + a_1 b_{n - 1} + \cdots + a_n b_0)x^n = S_1(x) S_2(x) \quad x\in (-R, +R)\)
- \(\displaystyle \cfrac {S_1(x)}{S_2(x)} = \cfrac {\sum_{n = 0}^\infty a_n x^n}{\sum_{n = 0}^\infty b_n x^n} = c_0 + c_1 x + \cdots + c_n x^n + \cdots\)
- 和函數\(S(x)\)在收斂域上連續;
- 和函數\(S(x)\)在收斂域上可導,且可逐項求導,\(S'(x) = \displaystyle \sum_{n = 0}^\infty n a_n x^{n-1}\);
- 和函數\(S(x)\)在收斂域上可積,且可逐項積分,\(\displaystyle \int_0^x S(x)dx = \sum_{n = 0}^\infty \int_0^x a_n x^n dx = \sum_{n = 0}^\infty \cfrac {a_n}{n+1} x^{n+1}\)。
函數展開成冪級數
- 泰勒級數:\(\displaystyle \sum_{n = 0}^\infty \cfrac {f^{(n)}(x_0)}{n!} (x - x_0)^n\)
- 麥克勞林級數:\(\displaystyle \sum_{n = 0}^n \cfrac {f^{(n)}(0)}{n!} x^n\)
- 泰勒級數的收斂定理:設\(f(x)\)在\(x = x_0\)處任意階可導,則泰勒級數在\(|x - x_0| \lt R\)內收斂於\(f(x)\)的充要條件是\(\displaystyle \lim_{n \to \infty} R_n(x) = 0\),其中\(R_n(x) = \cfrac {f^{(n+1)}(x_0 + \theta (x - x_0))}{(n+1)!} (x - x_0)^{n+1}\)。
- 常用的麥克勞林公式
- \(\cfrac 1{1-x} = 1 + x + x^2 + \cdots + x^n + \cdots \quad x \in (-1, 1)\)
- \(\cfrac 1{1+x} = 1 - x + x^2 + \cdots + (-1)^n x^n + \cdots \quad x \in (-1, 1)\)
- \(e^x = 1 + x + \cfrac {x^2}{2!} + \cdots + \cfrac {x^n}{n!} + \cdots \quad x \in (-\infty, +\infty)\)
- \(\sin x = x - \cfrac {x^3}{3!} + \cdots + \cfrac {(-1)^n x^{2n+1}}{(2n+1)!} + \cdots \quad x \in (-\infty, +\infty)\)
- \(\cos x = 1 - \cfrac {x^2}{2!} + \cdots + \cfrac {(-1)^n x^{2n}}{(2n)!} + \cdots \quad x \in (-\infty, +\infty)\)
- \(\ln (1+x) = x - \cfrac {x^2}2 + \cdots + \cfrac {(-1)^{n-1} x^n}n + \cdots \quad x \in (-1. 1]\)
- \((1+x)^\alpha = 1 + \alpha x + \cfrac {\alpha (\alpha -1)}{2!} x^2 + \cdots + \cfrac {\alpha (\alpha - 1)\cdots(\alpha - n + 1)}{n!} x^n + \cdots \quad x \in (-1,1)\)
- 應用:近似計算、解微分方程
5 三角級數
定義 三角函數系的正交性
- 三角級數:\(\cfrac {a_0}2 + \displaystyle \sum_{n = 1}^\infty (a_n \cos nx + b_n \sin nx)\)
- 正交是指在區間積分為零:
- \(\displaystyle \int_{-\pi}^\pi \cos nx dx = 0, \int_{-\pi}^\pi \sin nx dx = 0, (n = 1, 2, 3, \cdots)\)
- \(\displaystyle \int_{-\pi}^\pi \sin kx \cos nx dx = 0, (k,n = 1, 2, 3, \cdots)\)
- \(\displaystyle \int_{-\pi}^\pi \cos kx \cos nx dx = 0, \int_{-\pi}^\pi \sin kx \sin nx dx = 0, (k, n = 1, 2, 3, \cdots ,k \neq n)\)
函數展開為傅里葉級數
-
傅里葉級數:\(\begin{cases} \displaystyle a_n = \cfrac 1\pi \int_{-\pi}^\pi f(x) \cos nx dx & n = 0, 1, 2, 3, \cdots \\ \displaystyle b_n = \cfrac 1\pi \int_{-\pi}^\pi f(x) \sin nx dx & n = 1, 2, 3, \cdots \\ \end{cases}\)稱為\(f(x)\)的傅里葉級數。
\(f(x) \sim \cfrac {a_0}2 + \displaystyle \sum_{n = 1}^\infty (a_n \cos nx + b_n \sin nx)\)
-
狄利克雷定理:設\(f(x)\)為周期為\(2\pi\)的周期函數,如果它滿足:在一個周期內連續或者只有有限個第一類間斷點,在一個周期內至多有有限個極值點,那么\(f(x)\)的傅里葉級數收斂。並且
- 當\(x\)是連續點時,級數收斂於\(f(x)\);
- 當\(x\)是間斷點時,級數收斂域\(\cfrac {f(x^-) + f(x^+)}2\)。
-
對於周期為\(2\pi\)的函數的傅里葉級數展開分兩步進行:
- 計算\(a_n, b_n\);
- 討論收斂情況。
-
對於周期為\(2l\)的函數的傅里葉級數展開分兩步進行:
- 計算展開式:\(f(x) = \cfrac {a_0}2 + \displaystyle \sum_{n = 1}^\infty (a_n \cos \cfrac {n \pi x}l + b_n \sin \cfrac {n \pi x}l), (x \in C)\),其中\(\begin{cases} \displaystyle a_n = \cfrac 1l \int_{-l}^l f(x) \cos \cfrac {n \pi x}l dx & n = 0, 1, 2, \cdots \\ \displaystyle b_n = \cfrac 1l \int_{-l}^l f(x) \sin \cfrac {n \pi x}l dx & n = 1, 2, 3, \cdots \\ C = \left\{ x \mid f(x) = \cfrac 12 [f(x^-) + f(x^+)] \right\} \\ \end{cases}\)
- 討論收斂情況。