高數筆記 P04:微分方程


  • 通解中獨立常數的個數等於方程的階數。
  • 求解過程中不確定正負的因子要加絕對值。
  • 可能出現丟解的情況,這種解稱為奇解,全部解包含通解和奇解,只有在線性的微分方程中,通解才等同於全部解。

1 變量可分離的微分方程

形如\(\cfrac {dy}{dx} = h(x)g(y)\)

\(\implies \cfrac {dy}{g(y)} = h(x)dx\)

\(\implies \displaystyle \int \cfrac {dy}{g(y)} = \int h(x)dx + C\)

2 齊次微分方程

形如\(\cfrac {dy}{dx} = f(\cfrac yx)\)

\(\implies\)\(u = \cfrac yx \implies y = ux \implies \cfrac{dy}{dx} = \cfrac {du}{dx}x + u\)

\(\implies \cfrac {du}{dx}x + u = f(u) \implies \cfrac {du}{f(u) - u} = \cfrac {dx}x\)

\(\implies \displaystyle \int \cfrac {du}{f(u) - u} = \int \cfrac {dx}x + C\)

可化作齊次的微分方程

形如\(\cfrac {dy}{dx} = \cfrac {ax + by + c}{a_1 x + b_1 y + c_1}\),當\(c = c_1 = 0\)時,方程時齊次的,否則就不是齊次的。

\(x = X +h, y = Y + k \implies dx = dX, dy = dY\)

\(\implies \cfrac {dY}{dX} = \cfrac {aX + bY + ah + bk + c}{a_1 X + b_1 Y + a_1 h + b_1 k + c_1}\)

若方程組\(\begin{cases} ah + bk + c = 0 \\ a_1h + b_1 k + c_1 = 0 \\ \end{cases}\)的系數行列式\(\left| \begin{matrix} a & b \\ c & d\end{matrix} \right| \neq 0\),即\(\cfrac {a_1}a \neq \cfrac {b_1}b\),可以找出滿足這個方程組的\(h, k\),將上式化簡成\(\cfrac {dY}{dX} = \cfrac {aX + bY}{a_1X + b_1Y}\),以齊次微分方程的解法求解;

\(\cfrac {a_1}a = \cfrac {b_1}b = \lambda\),原式可以化簡為\(\cfrac {dy}{dx} = \cfrac {ax + by + c}{\lambda (ax + by) + c_1}\),取\(v = ax + by\)

\(\implies \cfrac {dv}{dx} = a + b \cfrac {dy}{dx} \implies \cfrac {dy}{dx} = \cfrac 1b (\cfrac {dv}{dx} - a)\),即

\(\implies \cfrac 1b (\cfrac {dv}{dx} - a) = \cfrac {v + c}{\lambda v + c_1}\),為可分離變量的微分方程。

3 一階線性微分方程

形如\(y'+ P(x)y = Q(x)\)

\(\implies\)同乘\(e^{\int (Px)dx} \implies e^{\int P(x)dx} \cdot y' + P(x) \cdot e^{\int P(x)dx} \cdot y = Q(x) \cdot e^{\int P(x)dx}\)

\(\implies\)\((uv' + u'v = (uv)') \implies (e^{\int P(x)dx} \cdot y)' = Q(x) \cdot e^{\int P(x)dx}\)

\(\implies \displaystyle e^{\int P(x)dx} \cdot y = \int Q(x) e^{\int P(x)dx} dx + C\)

\(\implies \displaystyle y = e^{-\int P(x)dx} \left[ \int Q(x) e^{\int P(x)dx} dx + C \right]\)

伯努利方程

形如\(\cfrac {dy}{dx} + P(x)y = Q(x)y^n, (n \neq 0,1)\)

\(\implies\)同乘\(y^{-n} \implies y^{-n} \cfrac {dy}{dx} + P(x) y^{1-n} = Q(x)\),令\(z = y^{1 - n}\)

\(\implies \cfrac {dz}{dx} = (1-n) y^{-n} \cfrac {dy}{dx} \implies \cfrac 1{1-n} \cfrac {dz}{dx} + P(x)z = Q(x)\),同乘\((1-n)\)

\(\implies \cfrac {dz}{dx} = [(1-n)P(x)] \cdot z = [(1-n)Q(x)]\),利用一階線性微分方程的解法解左式,然后求得原方程的解。

全微分方程

若存在二元函數\(u(x, y)\)使得\(du = P(x, y)dx + Q(x, y)dy\),則稱微分方程\(P(x, y)dx = Q(x, y)dy = 0\)為全微分方程,它的通解為\(u(x, y) = C\)

4 可降階的高階微分方程

  • 形如\(y^{(n)} = f(x)\),逐次積分即可

    \(\implies \displaystyle y^{(n - 1)} = \int f(x)dx + C_1\)

    \(\implies \displaystyle y^{(n - 2)} = \int (\int f(x)dx + C_1)dx + C_2\)

    \(\implies \cdots \cdots\)

  • 形如\(y'' = f(x, y')\),令\(p = y' \implies y'' = \cfrac{dp}{dx} = p'\)

    \(\implies\)方程化為\(p' = f(x, p)\)的一階微分方程,解得\(p = \varphi(x, C_1)\)帶入\(p = y'\),再次獲得一個一階微分方程,求解即可。通解為\(\displaystyle y = \int \varphi(x, C_1) dx + C_2\)

  • 形如\(y'' = f(y, y')\),令\(p = y' \implies y'' = \cfrac {dp}{dx} = \cfrac {dp}{dy} \cdot \cfrac {dy}{dx} = p \cfrac {dp} {dy}\)

    \(\implies\)方程化為\(p \cfrac {dp}{dy} = f(y, p)\)的一階微分方程,解得\(p = \varphi (y, C_1)\)帶入\(p = y'\),再次獲得一個一階微分方程,求解即可。通解為\(\displaystyle \int \cfrac {dy}{\varphi (y, C_1)} = \int dx + C_2 = x + C_2\)

5 高階線性微分方程解的結構

  • 對於二階齊次線性方程\(y'' + P(x)y' + Q(x)y = 0\):
    • 如果\(y_1(x), y_2(x)\)是其兩個解,則\(y = C_1 y_1(x) + C_2 y_2(x)\)也是它的解;
    • 如果\(y_1(x), y_2(x)\)是其兩個線性無關的特解,則\(y = C_1 y_1(x) + C_2 y_2(x)\)是它的通解。
  • 對於\(n\)階齊次線性方程\(y^{(n)} + a_1(x) y^{(n - 1)} + \cdots + a_{n-1}(x) y' + a_n(x) y = 0\),如果\(y_1(x), y_2(x), \cdots , y_n(x)\)是其\(n\)個線性無關的特解,則此方程的通解為\(y = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n(x)\)
  • 對於二階非齊次線性方程\(y'' + P(x) y' + Q(x) y = f(x)\),如果\(y^*(x)\)是其一個特解,\(Y(x)\)是其對應的齊次方程的通解,則\(y = Y(x) + y^*(x)\)是它的通解。
  • 線性微分方程的解的疊加原理:設\(y_1^*(x), y_2^*(x)\)分別是方程\(y'' +P(x) y' + Q(x)y = f_1(x), \ and \ \ y'' + P(x) y' + Q(x)y = f_2(x)\)的特解,則\(y = y_1^*(x) + y_2^*(x)\)是方程\(y'' + p(x) y' + Q(x)y = f_1(x) + f_2(x)\)的特解。

6 常系數齊次線性微分方程

  • 對於二階常系數齊次線性微分方程\(y'' + py' + qy = 0\),其中\(p, q\)為常數,特征方程為\(r^2 + pr + q = 0\),解得特征根\(r\)。則其通解為

    \(\begin{array}{c|c} r_1 \neq r_2 & y = C_1 e^{r_1 x} + C_2 e^{r_2 x} \\ r_1 = r_2 & y = (C_1 + C_2 x) e^{r_1x} \\ r_{1,2} = \alpha \pm \beta i (\beta \neq 0) & y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) \\ \end{array}\)

  • 對於\(n​\)階常系數齊次線性微分方程\(y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \cdots + p_{n-1}y' + p_n y = 0​\),解其特征方程,通解為

    \(\begin{array}{c|l} \text{single real root } r & C e^{rx} \\ \text{pair of single complex root } r_{1, 2} = \alpha + \beta i & e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x) \\ k \text{ repeated real root } r & e^{rx}(C_1 + C_2 x + \cdots + C_k x^{k - 1}) \\ \text{pair of } k \text{ repeated complex root } r_{1, 2} = \alpha + \beta i & e^{\alpha x} [(C_1 + C_2 x + \cdots + C_k x^{k - 1}) \cos \beta x + (D_1 + D_2 x + \cdots + D_k x^{k - 1}) \sin \beta x] \end{array}\)

7 常系數非齊次線性微分方程

  • 對於二階常系數齊次線性微分方程\(y'' + py' + qy = f(x)​\),其中\(p, q​\)為常數,可以將求解問題歸結為求其對於齊次方程的通解和求該方程的一個特解特征方程為。兩種常見的\(f(x)​\)形式

    • \(f(x) = e^{\lambda x} P_m(x)\),其中\(P_m\)\(m\)次多項式。

      \(y^*(x) = R(x) e^{\lambda x} \implies {y^*}' = e^{\lambda x} [\lambda R(x) + R'(x)], {y^*}'' = e^{\lambda x} [\lambda^2 R(x) + 2\lambda R'(x) + R''(x)]\)

      帶入方程並消去\(e^{\lambda x}\)得,\(R''(x) + (2\lambda +p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)\)

      1. \(\lambda\)不是特征方程的根,\(y^* = R_m(x) e^{\lambda x}\)
      2. \(\lambda\)是特征方程的單根,\(y^* = x R_m e^{\lambda x}\)
      3. \(\lambda\)是特征方程的重根,\(y^* = x^2 R_m(x) e^{\lambda x}\)

      其中\(x^k R_m(x)\)的系數通過與\(P_m(x)\)的同次冪系數恆等來建立方程組求得。

    • \(f(x) = e^{\lambda x} [P_l(x) \cos \omega x + Q_n(x) \sin \omega x]\),使用歐拉公式\(\begin{cases} \cos \theta = \frac 12 (e^{i\theta} + e^{-i\theta}) \\ \sin \theta = \frac 12 (e^{i\theta} - e^{-i\theta}) \end{cases}\),把\(f(x)\)變成復變指數函數的形式

      \(\begin{aligned} f(x) & = e^{\lambda x} [P_l \cfrac {e^{\omega x i} + e^{-\omega x i}}2 + Q_n \cfrac {e^{\omega x i} - e^{-\omega x i}}2] \\ & = (\cfrac {P_l}2 + \cfrac {Q_n}{2i}) e^{(\lambda + \omega i)x} + (\cfrac {P_l}2 - \cfrac {Q_m}{2i}) e^{(\lambda - \omega i)x} \\ & =P(x) e^{(\lambda + \omega i)x} + \overline P(x) e^{(\lambda - \omega i)x} \\ \end{aligned}\)

      其中\(P(x) = \cfrac {P_l}2 - \cfrac {Q_n}2 i, \ \overline P(x) = \cfrac {P_l}2 + \cfrac {Q_n}2 i, m = \max\{l, n\}\)

      使用疊加原理,將\(f(x)\)分解成兩項,方程變為兩個方程,按照前面的進行求解。

      \(y_1^* = x^k R_m(x) e^{(\lambda + \omega i) x}\)為方程\(y'' + py' + qy = P(x) e^{(\lambda + \omega i)x}\)的一個特解,則其共軛\(y_2^* = x^k \overline R_m(x) e^{(\lambda - \omega i) x}\)為方程\(y'' + py' + qy = \overline P(x) e^{(\lambda - \omega i)x}\)的一個特解,其中\(\overline R_m(x)\)\(R_m(x)\)的共軛\(m\)次多項式,\(m = \max \{ l, n \}\)

      疊加,\(y^* = x^k e^{\lambda x} [R_m e^{\omega x i} + \overline R_m e^{-\omega x i}] = x^k e^{\lambda x} [R_m (\cos \omega x + i \sin \omega x) + \overline R_m (\cos \omega x - i \sin \omega x)]\)

      由於括號內的兩項是互成共軛的,相加之后無虛部,因此

      \(y^* = x^k e^{\lambda x} [R_m^{(1)}(x) \cos \omega x + R_m^{(2)}(x) \sin \omega x]\),其中\(R_m^{(1)}(x), R_m^{(2)}(x)\)\(m\)次多項式,系數按照前面的方法求得。

8 歐拉方程

形如\(x^n y^{(n)} + p_1 x^{n - 1} y^{(n - 1)} + \cdots + p_{n - 1}xy' + p_n y = f(x)\),作變換\(x = e^t\),取記號\(D\)\(\cfrac d{dt}\),則

\(xy' = Dy, \quad x^2 y'' = D(D-1)y,\quad \cdots, \quad x^k y^{(k)} = D(D-1)(D-2) \cdots (D-k+1)y \quad \cdots\)

將上述帶入原方程,方程轉化為一個以\(t\)為自變量的常系數線性微分方程,求解即可。

如二階的方程\(x^2 y'' + pxy' + qy = f(x)\),可以化簡為\(y''(t) + (p-1)y'(t) + qy(t) = f(e^t)\)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM