概念:導數、微分\(dx,dy\)、高階導數
1 導數
定義
\(\displaystyle \lim_{\Delta x \to 0} \cfrac {f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0) \ \iff\)
\(\displaystyle \lim_{x \to x_0} \cfrac {f(x) - f(x_0)}{x - x_0} = f'(x_0)\)
上述兩個定義都是導數的定義,其中的變量滿足一動一靜。
\(f'(x)\)存在 \(\iff f'_+(x) = f'_-(x)\)
若\(f(x)\)是可導的偶函數,則\(f'(x)\)為奇函數;若\(f(x)\)為可導的奇函數,則\(f'(x)\)為可導的偶函數。
性質
- 若\(f(x)\)在\(x\)處可導,則\(f(x)\)在此處連續。
- \(dy = f'(x)dx\).
- \(\Delta y = dy + \omicron (\Delta x) = f'(x_0) + \omicron (\Delta x) \Rightarrow \Delta y - dy = \frac 12 f''(\xi)(\Delta x)^2\)
計算
-
\((uv)' = u'v + v'u\)
-
\((\cfrac uv)' = \cfrac {u'v -v'u}{v^2},(v \neq 0)\)
-
\((u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}\)
-
萊布尼茨公式:\((uv)^{(n)} = u^{(n)} v + \mathrm{C}_n^1 u^{(n-1)} v' + \cdots + \mathrm{C}_n^k u^{(n-k)} v^{(k)} + \cdots + u v^{(n)}\)
-
\(\displaystyle (\int_{\varphi_1 (x)}^{\varphi_2 (x)}f(t)dt)' = f(\varphi_2 (x)) \varphi_2' (x) - f(\varphi_1 (x)) \varphi_1' (x)\)
-
初等函數的導數
- \(C' = 0\)
- \((x^\alpha)' = \alpha x^{\alpha - 1}\)
- \((a^x)' = a^x \ln a\)
- \((\ln x)' = \cfrac 1x, \ (\log_a x)' = \cfrac 1{x \ln a}\)
- \((x^x)' = (e^{x \ln x})' = x^x(\ln x + 1)\)
- \((\sin x)' = \cos x, \ (\cos x)' = -\sin x\)
- \((\tan x)' = \sec^2 x, \ (\cot x)' = -\csc^2 x\)
- \((\sec x)' = \sec x \tan x, \ (\csc x)' = -\csc x \cot x\)
- \((\arcsin x)' = \cfrac 1{\sqrt{1-x^2}}, \ (\arccos x)' = -\cfrac 1{\sqrt{1-x^2}}\)
- \((\arctan x)' = \cfrac 1{1+x^2}\)
-
常見的\(n\)階導數
- \((e^{ax})^{(n)} = a^n e^{ax}\)
- \((\sin ax)^{(n)} = a^n \sin(\cfrac {n\pi}2 + ax)\)
- \((\cos ax)^{(n)} = a^n \cos(\cfrac {n\pi}2 + ax)\)
- \((\ln (1+x))^{(n)} = \cfrac {(-1)^{n-1}(n-1)!}{(1+x)^n}\)
- \(((1+x)^\alpha)^{(n)} = \alpha (\alpha - 1) \cdots (\alpha - n + 1)(1 + x)^{\alpha - n}\)
- \((\ln x)^{(n)} = \cfrac {(-1)^{n-1}(n-1)!}{x^n}\)
- \((a^x)^{(n)} = a^x \ln^n a\)
- \((\cfrac 1{x+a})^{(n)} = \cfrac {(-1)^n n!}{(x+a)^{n+1}}\)
-
復合函數求導:\([f(\varphi (x))]' = f'(\varphi (x)) \cdot \varphi' (x)\)
-
隱函數求導
-
對數求導法:\(u(x)^{v(x)} = e^{v(x) \ln u(x)}\)
-
反函數求導:
\(\cfrac {dx}{dy} = \cfrac 1{y'}\)
\(\cfrac {d^2x}{dy^2} = \cfrac {d \cfrac {dx}{dy}}{dy} = \cfrac {d \cfrac 1{y'}}{dx} \cdot \cfrac {dx}{dy} = - \cfrac 1{(y')^2} \cdot y'' \cdot \cfrac 1{y'} = -\cfrac {y''}{(y')^3}\)
\(\cfrac {d^3x}{dy^3} = \cfrac {3(y'')^2 -y'y'''}{(y')^5}\)
-
參數方程求導:對於\(\begin{cases} x = x(t) \\ y = y(t) \end{cases}\),有\(y_x' = \cfrac {y_t'}{x_t'}\)
應用
-
極值、最值
- 設\(f(x)\)在\(x = x_0\)處連續,在\(x = x_0\)的去心鄰域內可導。左側\(f'(x) \gt 0\),右側\(f'(x) \lt 0\),則\(f(x_0)\)為極大值;左側\(f'(x) \lt 0\),右側\(f'(x) \gt 0\),則\(f(x_0)\)為極小值。
- 設\(f(x)\)在\(x = x_0\)處存在二階導數,\(f'(x_0) = 0\),\(f''(x_0) \neq 0\)。\(f''(x_0) \lt 0\),則\(f(x_0)\)為極大值;\(f''(x_0) \gt 0\),則\(f(x_0)\)為極小值。
- 設\(f(x)\)在\(x = x_0\)處存在\(n\)階導數,\(f'(x_0) = f''(x_0) = \cdots = f^{(n-1)} (x) = 0\),\(f^{(n)} (x_0) \neq 0\)。\(n\)為奇數時,\(f(x_0)\)不是極值點;\(n\)為偶數時,若\(f''(x_0) \lt 0\),則\(f(x_0)\)為極大值,若\(f''(x_0) \gt 0\),則\(f(x_0)\)為極小值。
-
單調性、凹凸性
-
弦在曲線上方為凹;反之為凸。
\(\cfrac {f(x_1) + f(x_2)}2 \gt f(\cfrac {x_1 + x_2}2)\)為凹;\(\cfrac {f(x_1) + f(x_2)}2 \lt f(\cfrac {x_1 + x_2}2)\)為凸。
-
任意區間上\(f''(x) \gt 0\)為凹;反之為凸。
-
-
拐點(凹凸的分界點)、駐點(導函數等於零的點)
- 設\(f(x)\)在\(x = x_0\)處連續,在\(x = x_0\)的某去心鄰域內二階可導,且在\(x = x_0\)的左右鄰域\(f''(x)\)反號,則點\((x_0, f(x_0))\)是曲線\(y = f(x)\)的拐點。
- 設\(f(x)\)在\(x = x_0\)處\(n\)可導,且\(f'(x_0) = f''(x_0) = \cdots = f^{(n-1)} (x) = 0\),\(f^{(n)} (x_0) \neq 0\)。\(n\)為奇數時,點\((x_0, f(x_0))\)是曲線\(y = f(x)\)的拐點。
-
漸近線
- 水平漸近線:\(\displaystyle \lim_{x \to \infty} f(x) = b\),則\(y = b\)是一條水平漸近線。
- 鉛直漸近線:\(\displaystyle \lim_{x \to x_0^+} = \infty \ or \ \lim_{x \to x_0^-} = \infty\),則\(x = x_0\)是一條鉛直漸近線。\(x_0\)的取值一般是分母為零、對數的真數為零等。
- 斜漸近線:\(\displaystyle \lim_{x \to \infty} \cfrac {f(x)}x = a, \ \lim_{x \to \infty} (f(x) - ax) = b\),則\(y = ax + b\)是一條斜漸近線。
-
曲線
- 弧微分:\(ds = \sqrt{1+y'^2}dx\)
- 曲率:\(K = \cfrac {y''}{(1+y'^2)^{\frac 32}}\)
- 曲率圓與曲率半徑:\(\rho = \cfrac 1K\)
方程近似求解
- 二分法:
- 尋找區間\([a, b]\)滿足\(f(a) \cdot f(b) \lt 0\);
- 取中點\(\xi_1 = \cfrac {a+b}2\),計算\(f(\xi_1)\);
- 若\(f(\xi_1) = 0\),則\(\xi_1\)為所求解;否則根據符號異號減小區間,再次取中點計算,直到滿足誤差;
- 誤差為\(\cfrac 1{2^n}(b - a)\)。
- 切線法:
- 尋找區間\([a, b]\)滿足\(f(a) \cdot f(b) \lt 0\);
- 選取一個合適的區間端點做切線\(y - f(\xi_0) = f'(\xi_0)(x - \xi_0)\),與\(x\)軸交點\(\xi_1 = \xi_0 \cfrac {f(\xi_0)}{f'(\xi_0)}\),計算\(f(\xi_1)\);
- 若\(f(\xi_1) = 0\),則\(\xi_1\)為所求解;否則根據符號異號減小區間,利用\(\xi_n = \xi_{n-1} \cfrac {f(\xi_{n-1})}{f'(\xi_{n-1})}\)計算,直到滿足誤差;
- 誤差為最后所取區間的大小。
- 割線法
- 尋找區間\([a, b]\)滿足\(f(a) \cdot f(b) \lt 0\);
- 取\(\xi_{n+1} = \xi_n - \cfrac {\xi_n - \xi_{n-1}}{f(\xi_n) - f'(\xi_{n-1})} f(\xi_n)\),計算\(f(\xi_{n+1})\);
- \(f(\xi_{n+1}) = 0\),則\(\xi_{n+1}\)為所求解;否則根據符號異號減小區間,重復步驟 2、3;
- 誤差為最后所取區間的大小。