1 不定積分與定積分
定義
-
不定積分:\(\displaystyle \int f(x)dx = F(x) + C\)
連續函數必有原函數;含有第一類間斷點、無窮間斷點的函數在包含該間斷點的區間內必沒有原函數。
-
定積分:\(\displaystyle \int_a^b f(x)dx = \lim_{\lambda \to 0} \sum_{i = 1}^n f(\xi_i)\Delta x_i\)
設\(f(x)\)在\([a,b]\)上連續,則\(\displaystyle \int_a^b f(x)dx\)存在。設\(f(x)\)在\([a,b]\)上有界,且只有有限個間斷點,則\(\displaystyle \int_a^b f(x)dx\)存在。
-
變限積分:\(\displaystyle \int_{\varphi_1(x)}^{\varphi_2(x)} f(t)dt\),其中\((\displaystyle \int_{\varphi_1(x)}^{\varphi_2(x)} f(t)dt)' = f(\varphi_2(x)) \cdot \varphi_2(x) - f(\varphi_1(x)) \cdot \varphi_1(x)\)
-
反常積分:\(\displaystyle \int_{-\infty}^{+\infty} f(x)dx = \displaystyle \int_{-\infty}^C f(x)dx + \displaystyle \int_C^{+\infty} f(x)dx\).(這里必須這樣計算,否則前面是不存在的。)
-
瑕點:無界間斷點。瑕積分:無界函數的反常積分。
性質
- 牛頓-萊布尼茨公式:\(\displaystyle \int_a^b f(x)dx = F(b) - F(a)\)
- 保號性:在區間\([a,b]\)上\(f(x) \le g(x)\),則有\(\displaystyle \int_a^b f(x) dx \le \int_a^b g(x) dx\)。
- 估值定理:設\(m,M\)為\(f(x)\)在區間\([a, b]\)上的最小值和最大值,則\(m(b-a) \le \displaystyle \int_a^b f(x) dx \le M(b-a)\)。
- 中值定理:設\(f(x)\)在區間\([a, b]\)上連續,則\(\exists \xi \in [a,b]\),使得\(\displaystyle \int_a^b f(x) dx = f(\xi)(b-a)\)。
不定積分計算--a.湊微分法
-
基本積分公式
- \(\displaystyle \int x^kdx = \cfrac 1{k+1} x^k + C, k \neq -1\)
- \(\displaystyle \int \cfrac 1xdx = \ln |x| + C\)
- \(\displaystyle \int a^xdx = a^x \cfrac 1{\ln a} + C, a \gt 0 \ and \ a \neq 1\)
- \(\displaystyle \int e^x = e^x + C\)
- \(\displaystyle \int \sin xdx= -\cos x + C\)
- \(\displaystyle \int \cos xdx = \sin x + C\)
- \(\displaystyle \int \tan xdx = -\ln |\cos x| + C\)
- \(\displaystyle \int \cot xdx = \ln |\sin x| + C\)
- \(\displaystyle \int \sec xdx = \ln |\sec x + \tan x| + C\)
- \(\displaystyle \int \csc xdx = \ln |\csc x - \cot x| + C\)
- \(\displaystyle \int \sec^2 xdx = \tan x + C\)
- \(\displaystyle \int \csc^2 xdx = -\cot x + C\)
- \(\displaystyle \int \sec x \tan xdx = \sec x + C\)
- \(\displaystyle \int \csc x \cot xdx = -\csc x + C\)
- \(\displaystyle \int \cfrac 1{\sqrt{1 - x^2}}dx = \arcsin x + C\)
- \(\displaystyle \int \cfrac 1{1 + x^2}dx = \arctan x + C\)
- \(\displaystyle \int \cfrac 1{\sqrt{a^2 - x^2}}dx = \arcsin \cfrac xa + C\)
- \(\displaystyle \int \cfrac 1{\sqrt{a^2 + x^2}}dx = \ln (x + \sqrt{a^2 + x^2}) +_ C\)
- \(\displaystyle \int \cfrac 1{\sqrt{x^2 - a^2}}dx = \ln (x + \sqrt{x^2 - a^2}) + C\)
- \(\displaystyle \int \cfrac 1{a^2 + x^2}dx = \cfrac 1a \arctan \cfrac xa + C\)
- \(\displaystyle \int \cfrac 1{a^2 - x^2}dx = \cfrac 1{2a} \ln |\cfrac{a+x}{a-x}| + C\)
- \(\displaystyle \int \cfrac 1{x^2 - a^2}dx = \cfrac 1{2a} \ln |\cfrac {x-a}{x+a}| + C\)
-
常用湊微分公式
- \(\cfrac {du}{2\sqrt u} = d(\sqrt{u}), \ \cfrac {du}{u^2} = d(-\cfrac 1u)\)
- \(\cfrac {du}{\sqrt{1-u^2}} = d(\arcsin u), \ \cfrac {du}{1+u^2} = d(\arctan u)\)
- \(\cfrac {u'(x)}{\sqrt{u(x)}}dx = d(2\sqrt{u(x)}), \ \cfrac {u'(x)}{u(x)}dx = d(\ln|u(x)|)\)
- \(\cfrac {du}{1 + \cos u} = d(\tan \cfrac u2), \ \cfrac {du}{1 - \cos u} = d(-\cot \cfrac u2)\)
- \(\cos 2udu = d(\sin u \cos u)\)
不定積分計算--b.換元法
-
三角代換:當被積函數有\(\sqrt{a^2 \pm x^2}, \ \sqrt{x^2 - a^2}\)
\[\begin{array}{l|l} \sqrt{a^2 - x^2} & x = a \sin t(-\frac \pi 2 \lt t \lt \frac \pi 2) \\ \sqrt{a^2 + x^2} & x = a \tan t(-\frac \pi 2 \lt t \lt \frac \pi 2) \\ \sqrt{x^2 + a^2} & x = a \sec t(x \gt 0, 0 \le t \lt \frac \pi 2; x \lt 0, \frac \pi 2 \lt t \le \pi) \end{array} \] -
倒代換:\(x = \cfrac 1t\)
\[\begin{array}{l} \displaystyle \int \cfrac {dx}{x^k \sqrt{a^2 - x^2}},(k = 1, 2, 4 ,\cdots) \\ \displaystyle \int \cfrac {dx}{x^k \sqrt{a^2 + x^2}},(k = 1, 2, 4 ,\cdots) \\ \displaystyle \int \cfrac {dx}{x^k \sqrt{x^2 - a^2}},(k = 1, 2, 4 ,\cdots) \end{array} \] -
整體復雜代換
- \(\sqrt[n]{ax+b}, \ \sqrt{\cfrac {ax+b}{cx+d}}, \ \sqrt{ae^{bx}+c}\)
- \(a^x, \ e^x\)
- \(\ln x\)
- \(\arcsin x, \ \arctan x\)
不定積分計算--c.分部積分法
-
\(P_n(x) \cdot e^{ax}, \ P_n(x) \cdot \sin bx, \ P_n(x) \cdot \cos bx\)
-
\(e^{ax} \cdot \sin bx, \ e^{ax} \cdot \cos bx\)
-
\(P_n(x) \cdot \ln x, \ P_n(x) \cdot \arcsin x, \ P_n(x) \cdot \arctan x\)
\[\begin{array}{c|c|c|c|c|c|c} u & u' & u'' & u''' & \cdots & 0 \ or \ u^{(n+1)} & nothing \ here \\ \hline v^{(n+1)} & v^{(n)} & v^{(n-1)} & v^{(n-2)} & \cdots & v^{(t)} & (-1)^{n+1} \int u^{(n+1)}dx \\ \end{array} \]上面三種情況左側的部分為\(u\),右側的部分為\(v^{(n+1)}\);積分結果為上表格中的左上至右下,交叉相乘,正負相間,即$u \cdot v^{(n)} - u' \cdot v^{(n - 1)} + u'' \cdot v^{(n - 2)} - \cdots $
不定積分計算--d.有理函數積分法
對於\(\displaystyle \int \cfrac {P_n(x)}{Q_m(x)}dx, (n \lt m)\),將\(Q_m(x)\)因式分解:
- \(Q_m(x)\)的一次因式\((ax + b)\),產生一項\(\cfrac A{ax + b}\);
- \(Q_m(x)\)的\(k\)重一次因式\((ax + b)^k\),產生\(k\)項\(\cfrac {A_1}{ax + b} + \cfrac {A_2}{(ax + b)^2} + \cdots + \cfrac {A_k}{(ax + b)^k}\);
- \(Q_m(x)\)的二次因式\((px^2 + qx + r)\),產生一項\(\cfrac {Ax + B}{px^2 + qx + r}\);
- \(Q_m(x)\)的\(k\)重二次因式\((px^2 + qx + r)^k\),產生\(k\)項\(\cfrac {A_1 x + B_1}{px^2 + qx + r} + \cfrac {A_2 x + B_2}{(px^2 + qx + r)^2} + \dots + \cfrac {A_k x + B_k}{(px^2 + qx + r)^k}\);
定積分計算
- 利用不定積分和牛頓-萊布尼茨公式。
- 換元法,變上下限。
-
\[\displaystyle \int_0^{\frac {\pi}2} \sin^n xdx = \int_0^{\frac {\pi}2} \cos^n xdx = \begin{cases} \cfrac {n-1}n \cdot \cfrac {n-3}{n-2} \cdot \cfrac {n-5}{n-4} \cdot \cdots \cdot \cfrac 12 \cdot \cfrac \pi 2 & n \ is \ even \\ \cfrac {n-1}n \cdot \cfrac {n-3}{n-2} \cdot \cfrac {n-5}{n-4} \cdot \cdots \cdot \cfrac 23 & n \ is \ odd\end{cases}$$。 \]
- 根據正態分布概率密度,$$\displaystyle \int_{-\infty}^{+\infty} e{-x2} dx = 2\int_0^{+\infty} e{-x2} dx = \sqrt \pi$$
幾何應用
- 平面圖形面積
- 平面曲線弧長
- 參數方程下:\(\displaystyle s = \int_\alpha^\beta \sqrt{x'^2(t) + y'^2(t)} dt\)
- 直角坐標系:\(\displaystyle s = \int_a^b \sqrt{1 + y'^2(x)} dx\)
- 極坐標系:\(\displaystyle s = \int_\alpha^\beta \sqrt{r^2(\theta) + r'^2(\theta)} d\theta\)
- 計算旋轉體的體積
反常積分審斂法
- 反常積分收斂:設函數\(f(x)\)在區間\([a, +\infty)\)上連續,且\(f(x) \ge 0\)。若函數\(\displaystyle F(x) = \int_a^x f(t)dt\)在\([a, +\infty)\)上有上界,則反常積分\(\displaystyle \int_a^{+\infty} f(x) dx\)收斂。
- 比較審斂法 1:設函數\(f(x)\)在區間\([a, +\infty)(a \gt 0)\)上連續,且\(f(x) \ge 0\)。如果存在常數\(M \gt 0 \ and \ p \gt 1\),使得\(f(x) \le \cfrac M{x^p}(a \le x \lt +\infty)\),那么反常積分\(\displaystyle \int_a^{+\infty} f(x) dx\)收斂;如果存在常數\(N \gt 0\),使得\(f(x) \ge \cfrac Nx(a \le x \lt +\infty)\),那么反常積分\(\displaystyle \int_a^{+\infty} f(x) dx\)發散。
- 極限審斂法 1:設函數\(f(x)\)在區間\([a, +\infty)\)上連續,且\(f(x) \ge 0\)。如果存在常數\(\ p \gt 1\),使得\(\displaystyle \lim_{x \to +\infty} x^p f(x) = c \lt + \infty\),那么反常積分\(\displaystyle \int_a^{+\infty} f(x) dx\)收斂;如果\(\displaystyle \lim_{x \to +\infty} xf(x) = d \gt 0 \ or \ = +\infty\),那么反常積分\(\displaystyle \int_a^{+\infty} f(x) dx\)發散。
- 比較審斂法 2:設函數\(f(x)\)在區間\((a, b]\)上連續,且\(f(x) \ge 0\),\(x = a\)為\(f(x)\)的瑕點。如果存在常數\(M \gt 0 \ and \ q \lt 1\),使得\(f(x) \le \cfrac M{(x - a)^q}(a \lt x \le b)\),那么反常積分\(\displaystyle \int_a^{+\infty} f(x) dx\)收斂;如果存在常數\(N \gt 0\),使得\(f(x) \ge \cfrac N{x - a}(a \lt x \le b)\),那么反常積分\(\displaystyle \int_a^{+\infty} f(x) dx\)發散。
- 極限審斂法 2:設函數\(f(x)\)在區間\((a, b]\)上連續,且\(f(x) \ge 0\),\(x = a\)為\(f(x)\)的瑕點。如果存在常數\(0 \lt q \lt 1\),使得\(\displaystyle \lim_{x \to a^+} (x - a)^q f(x)\)存在,那么反常積分\(\displaystyle \int_a^{+\infty} f(x) dx\)收斂;如果\(\displaystyle \lim_{x \to a^+} (x - a)f(x) = d \gt 0 \ or \ = +\infty\),那么反常積分\(\displaystyle \int_a^{+\infty} f(x) dx\)發散。
\(\Gamma\)函數
- \(s = 1\)為函數\(e^{-x} x^{s-1}\)的瑕點。反常積分\(\displaystyle \int_0^{+\infty} e^{-x} x^{s-1} dx \quad (s \gt 0)\)收斂。
- 遞推公式:\(\Gamma(s + 1) = s\Gamma(s)\),\(\Gamma(n + 1) = n!\)。
- 當\(s \to 0^+\)時,\(\Gamma(s) \to +\infty\)。
- 余元公式:\(\Gamma(s) \Gamma(1 - s) = \cfrac {\pi}{\sin \pi s}\)
- 令\(x = u^2, \ s = \frac 12\)得,\(\displaystyle 2 \int_0^{+\infty} e^{-u^2} du = \Gamma(\frac 12) = \sqrt{\pi}\),即概率論中常用公式\(\displaystyle \int_0^{+\infty} e^{-u^2} du = \cfrac {\sqrt{\pi}}2\)。