高數筆記 P00b:常用定理


1 有界性定理

\(f(x)\)\([a,b]\)上連續,則\(\exists K \gt 0, \ |f(x)| \le K\).

2 最值定理

\(f(x)\)\([a,b]\)上連續,則\(m \le f(x) \le M\)\(m, M\)\(f(x)\)\([a,b]\)上的最小、最大值。

(后面的\(m,M\)根據情景一般是最值,不再指明。)

3 介值定理

  • \(f(x)\)\([a,b]\)上連續,且\(m \le \mu \le M\),則\(\exists \xi \in [a,b]\),使\(f(\xi ) = \mu\).
  • \(f(x)\)\([a,b]\)上連續,且\(f(a) \not = f(b)\),則\(f(x)\)可以取到\(f(a), \ f(b)\)之間的任意函數值。

4 零點定理

\(f(x)\)\([a,b]\)上連續,且\(f(a) \cdot f(b) \lt 0\),則\(\exists \xi \in [a,b]\),使\(f(\xi ) = 0\).

5 費馬定理

\(f(x)\)\(x = x_0\)處可導,並取到極值,則\(f'(x_0) = 0\).

6 羅爾定理

\(f(x)\)滿足:\([a,b]\)上連續,\((a,b)\)上可導,\(f(a) = f(b)\),則\(\exists \xi \in (a,b)\),使\(f'(\xi ) = 0\).

7 拉格朗日中值定理

\(f(x)\)滿足:\([a,b]\)上連續,\((a,b)\)上可導,則\(\exists \xi \in (a,b)\),使\(f'(\xi ) = \cfrac {f(b) - f(a)}{b - a}\).

證明如下:

\(f'(x) = \cfrac {f(b) - f(a)}{b - a}\),

兩邊同時積分,得\(f(x) = \cfrac{f(b) - f(a)}{b - a} x + C\) , 取\(C = 0\),

\(F(x) = f(x) - \cfrac{f(b) - f(a)}{b - a} x\), 其中

\(F(a) = \cfrac{bf(a) - af(b)}{b - a}, \ F(b) = \cfrac{bf(a) - af(b)}{b - a}\),

\(F(a) = F(b)\), 由羅爾定理,\(\exists \xi \in (a,b)\)\(F'(\xi ) = 0\),即\(f'(\xi ) = \cfrac {f(b) - f(a)}{b - a}\).

8 柯西中值定理

\(f(x), \ g(x)\)滿足:\([a,b]\)上連續,\((a,b)\)上可導,\(g'(x) \not = 0\)\(\exists \xi \in (a,b)\),使\(\cfrac {f(b) - f(a)}{g(b) - g(a)} = \cfrac {f'(\xi)}{g'(\xi)}\).

證明如下:

\(\cfrac {f(b) - f(a)}{g(b) - g(a)} = \cfrac {f'(x)}{g'(x)}\),

兩邊同時積分,得\([g(b) - g(a)]f(x) = [f(b) - f(a)]g(x)\),

\(F(x) = [g(b) - g(a)]f(x) - [f(b) - f(a)]g(x)\),

\(F(a) = f(a)g(b) - f(b)g(a), \ F(b) = f(a)g(b) - f(b)g(a)\),

\(F(a) = F(b)\), 由羅爾定理,\(\exists \xi \in (a,b)\)\(F'(\xi ) = 0\),即\(\cfrac {f(b) - f(a)}{g(b) - g(a)} = \cfrac {f'(\xi)}{g'(\xi)}\).

9 泰勒公式

\(f(x)\)\(x_0\)的某個鄰域內(或者\((a,b)\)內)有\(n+1\)階導數,則此鄰域內的任意\(x\),均有

\[f(x) = f(x_0) + f'(x_0)(x - x_0) + \cfrac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \cfrac{f^{(n)}(x_0)}{n!}(x- x_0)^n + remainder \]

  • 拉格朗日余項 \(\cfrac{f^{(n+1)}(\xi)}{(n+1)!}(x- x_0)^{n+1}\)
  • 佩亞諾余項 \(\omicron ((x - x_0)^n)\)

10 積分中值定理

\(f(x)\)\([a,b]\)上連續,則\(\exists \xi \in [a,b]\), 使\(\int_b^a f(x)dx = f(\xi)(b - a)\).

證明如下:

由題,設\(m,M\)\(f(x)\)\([a,b]\)上的最小值、最大值,\(m \le f(x) \le M\),

\(\int_b^a mdx \le \int_b^a f(x)dx \le \int_b^a Mdx\),

\(m(b - a) \le \int_b^a f(x)dx \le M(b - a)\),

\(\cfrac {\int_b^a f(x)dx}{(b - a)} = \mu\), 得\(m \le \mu \le M\),

由介值定理,\(\exists \xi \in [a,b]\), 使\(f(\xi) = \mu\).

因此,\(\exists \xi \in [a,b]\), 使\(f(\xi) (b - a) = \int_b^a f(x)dx\).


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM