赫爾德(Holder)不等式


若 $p,q > 1$,且 $\frac{1}{p} + \frac{1}{q} = 1$,則對於任意的 $n$ 維向量 $a = \left \{ x_{1},x_{2},...,x_{n} \right \}$$b = \left \{ y_{1},y_{2},...,y_{n} \right \}$,有

$$\sum_{i = 1}^{n}|x_{i}|\cdot |y_{i}| \leq \left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}}\left ( \sum_{i=1}^{n}|y_{i}|^{q} \right )^{\frac{1}{q}}$$

證明:

   令 $u = \frac{|x_{i}|}{\left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}}}$$v = \frac{|y_{i}|}{\left ( \sum_{i=1}^{n}|y_{i}|^{q} \right )^{\frac{1}{q}}}$,由楊氏不等式有

$$uv = \frac{|x_{i}|}{\left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}}} \cdot \frac{|y_{i}|}{\left ( \sum_{i=1}^{n}|y_{i}|^{q} \right )^{\frac{1}{q}}} \leq \frac{u^{p}}{p} + \frac{v^{q}}{q} = \frac{|x_{i}|^{p}}{p\sum_{i=1}^{n}|x_{i}|^{p} } + \frac{|y_{i}|^{q}}{ q\sum_{i=1}^{n}|y_{i}|^{q}}$$

   對於上式兩邊 $i$ 從 $1$ 到 $n$ 做連加得

$$\sum_{i=1}^{n}\frac{|x_{i}|}{\left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}}} \cdot \frac{|y_{i}|}{\left ( \sum_{i=1}^{n}|y_{i}|^{q} \right )^{\frac{1}{q}}} \leq \sum_{i=1}^{n}\frac{|x_{i}|^{p}}{p\sum_{i=1}^{n}|x_{i}|^{p} } + \sum_{i=1}^{n}\frac{|y_{i}|^{q}}{ q\sum_{i=1}^{n}|y_{i}|^{q}} = \frac{1}{p} + \frac{1}{q} = 1$$

$$\therefore \sum_{i=1}^{n} uv \leq 1$$

   於是有

$$\sum_{i = 1}^{n}|x_{i}|\cdot |y_{i}| \leq \left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}}\left ( \sum_{i=1}^{n}|y_{i}|^{q} \right )^{\frac{1}{q}}$$

證畢

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM