Jensen 不等式


若f(x)為區間I上的下凸(上凸)函數,則對於任意xi∈I和滿足∑λi=1的λi>0(i=1,2,...,n),成立:

\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i}) \qquad (f(\sum ^{n}_{i=1}\lambda _{i}x_{i})\geq \sum ^{n}_{i=1}\lambda _{i}f(x_{i}))\]

特別地,取λi=1/n  (i=1,2,...,n),就有

\[f(\frac{1}{n}\sum ^{n}_{i=1}x_{i})\leq \frac{1}{n}\sum ^{n}_{i=1} \qquad (f(\frac{1}{n}\sum ^{n}_{n=1})\geq \frac{1}{n}\sum ^{n}_{i=1}f(x_{i}))\]

 

為了方便說明,以下函數均以下凸函數為例

證明:

在i=1,2時 Jensen不等式 顯然成立:

 

\[f(\lambda _{1}x_{1}+\lambda _{2}x_{2})\leq \lambda _{1}f(x_{1})+\lambda _{2}f(x_{2})\]

\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i})\]

利用數學歸納法證明 i≥3 的情況

 

\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})=f(\lambda _{n+1}x_{n+1}+\sum ^{n}_{i=1}\lambda _{i}x_{i})\]

由題意\[\sum ^{n+1}_{i=1}\lambda _{i}=1\],

設\[\eta _{i}=\frac{\lambda {i}}{1-\lambda _{n+1}}\]

得:

\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})=f[\lambda _{n+1}x_{n+1}+(1-\lambda _{n+1})\sum ^{n}_{i=1}\eta _{i}x_{i}]\]

由i=2時 Jensen不等式 成立,可得

\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})\leq \lambda _{n+1}f(x_{n+1})+(1-\lambda _{n+1})f(\sum ^{n}_{i=1}\eta _{i}x_{i})\]

\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})\leq \lambda _{n+1}f(x_{n+1})+(1-\lambda _{n+1})\sum ^{n}_{i=1}\eta _{i}f(x_{i})=\sum ^{n+1}_{i=1}\lambda _{i}f(x_{i})\]

於是證得Jensen不等式在i≥3時也成立

\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i})\]


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM