若f(x)為區間I上的下凸(上凸)函數,則對於任意xi∈I和滿足∑λi=1的λi>0(i=1,2,...,n),成立:
\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i}) \qquad (f(\sum ^{n}_{i=1}\lambda _{i}x_{i})\geq \sum ^{n}_{i=1}\lambda _{i}f(x_{i}))\]
特別地,取λi=1/n (i=1,2,...,n),就有
\[f(\frac{1}{n}\sum ^{n}_{i=1}x_{i})\leq \frac{1}{n}\sum ^{n}_{i=1} \qquad (f(\frac{1}{n}\sum ^{n}_{n=1})\geq \frac{1}{n}\sum ^{n}_{i=1}f(x_{i}))\]
為了方便說明,以下函數均以下凸函數為例
證明:
在i=1,2時 Jensen不等式 顯然成立:
\[f(\lambda _{1}x_{1}+\lambda _{2}x_{2})\leq \lambda _{1}f(x_{1})+\lambda _{2}f(x_{2})\]
\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i})\]
利用數學歸納法證明 i≥3 的情況
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})=f(\lambda _{n+1}x_{n+1}+\sum ^{n}_{i=1}\lambda _{i}x_{i})\]
由題意\[\sum ^{n+1}_{i=1}\lambda _{i}=1\],
設\[\eta _{i}=\frac{\lambda {i}}{1-\lambda _{n+1}}\]
得:
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})=f[\lambda _{n+1}x_{n+1}+(1-\lambda _{n+1})\sum ^{n}_{i=1}\eta _{i}x_{i}]\]
由i=2時 Jensen不等式 成立,可得
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})\leq \lambda _{n+1}f(x_{n+1})+(1-\lambda _{n+1})f(\sum ^{n}_{i=1}\eta _{i}x_{i})\]
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})\leq \lambda _{n+1}f(x_{n+1})+(1-\lambda _{n+1})\sum ^{n}_{i=1}\eta _{i}f(x_{i})=\sum ^{n+1}_{i=1}\lambda _{i}f(x_{i})\]
於是證得Jensen不等式在i≥3時也成立
\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i})\]