關於最小二乘問題的求解,之前已有梯度下降法,還有比較快速的牛頓迭代。今天來介紹一種方法,是基於矩陣求導來計算的,它的計算方式更加簡潔高效,不需要大量迭代,只需解一個正規方程組。在開始之前,首先來認識一個概念和一些用到的定理。矩陣的跡定義如下 一個的矩陣的跡是指的主對角線上各元素的總和,記作。即 ...
矩陣的跡的定義:一個 n times n 的矩陣 A 的跡是指 A 的主對角線上各元素的總和,記作 operatorname tr A 。即 operatorname tr A sum limits limits i n a i i 定理 : operatorname tr A B operatorname tr B A 證明: operatorname tr A B sum limits i ...
2022-03-21 19:29 0 1080 推薦指數:
關於最小二乘問題的求解,之前已有梯度下降法,還有比較快速的牛頓迭代。今天來介紹一種方法,是基於矩陣求導來計算的,它的計算方式更加簡潔高效,不需要大量迭代,只需解一個正規方程組。在開始之前,首先來認識一個概念和一些用到的定理。矩陣的跡定義如下 一個的矩陣的跡是指的主對角線上各元素的總和,記作。即 ...
矩陣,實際上是指定基下的線性變換。 一、相似矩陣 對相似矩陣直觀的理解就是兩個在不同基下的變換矩陣,也可以理解成在不同視角下的變換過程。 例如有一個在基x,y下的向量v,p是根據兩個基得到的矩陣(分別計算x,y在x',y'的坐標作為兩個列向量)。v左乘p后只是換了基(表面上看是換了v ...
定義 \(A\)的跡定義為它的對角元素之和,即 tr\((A)\equiv \sum_iA_{ii}\) 跡的性質 如果\(A\)和\(B\)是兩個線性算子,\(z\) 是任意復數, 跡的循環性質 tr\((AB)\) = tr\((BA).\) 跡的線性性質 ...
矩陣的跡 一、定義 二、性質 2.1 2.2 2.3 跡等於特征根之和 2.4 三、二次型的跡 3.1 3.2 四、跡的導數 一、定義 線性代數中,把方陣的對角線之和稱為“跡 ...
1、矩陣的跡: 定義: 線性代數中,n乘n方陣A的跡,是指A的主對角線各元素的總和(從左上方至右下方的對角線),比如: 性質以及證明: 1、矩陣的跡等於特征值的和 特征值和特征向量 定義: 線性代數中,對於一個給定的矩陣A,它的特征向量x,經過這個線性變換 ...
正規矩陣 矩陣的跡以及行列式 伴隨矩陣 矩陣的逆 對角矩陣 矩陣求導 ...
矩陣的跡(trace) X∈P(n×n),X=(xii)的主對角線上的所有元素之和稱之為X的跡,記為tr(X),即tr(X)=∑xii 性質: (1) 設有N階矩陣A,那么矩陣A的跡(用tr(A)表示)就等於A的特征值的總和,也即A矩陣的主對角線元素的總和。 1.跡是所有 ...
「本文部分內容摘自一份佚名的資料」 --------------------------------------------------------------------------------- ...