原文:單變量微積分筆記21——三角替換2(tan和sec)

tan和sec常用公式 我一直認為三角函數中只有sin和cos是友好的,其它都是變態。現在不得不接觸一些變態: 這些變態的相關等式: 等式的證明 這個稍有點麻煩,先要做一些前置工作。 三角替換 示例 sec xdx 示例 tan xdx 解法 : 解法 : 示例 sinxsec xdx 出處:微信公眾號 我是 位的 本文以學習 研究和分享為主,如需轉載,請聯系本人,標明作者和出處,非商業用途 掃描 ...

2017-11-16 23:00 0 1047 推薦指數:

查看詳情

變量微積分筆記20——三角替換1(sin和cos)

sin和cos的常用公式   基本公式:   半角公式:   微分公式:   積分公式: 三角替換 示例1   根據微分公式,cosxdx = dsinx 示例2 示例3 半角公式 示例1 示例 ...

Thu Nov 16 06:57:00 CST 2017 0 3747
變量微積分筆記11——變量替換

  在二重積分中,極坐標替換是一種特殊情況,更一般的變量替換后的面積元是通過雅可比行列式來關聯,替換后的積分域也會隨之變動。 變量替換   二重積分可以計算面積,現在有一個橢圓 (x/a)2 + (y/b)2 = 1,如何計算該橢圓的面積?   很容易寫出Area = ∫∫Rdxdy ...

Fri Mar 30 00:53:00 CST 2018 1 3513
變量微積分筆記13——定積分

  定積分積分的一種,是函數f(x)在區間[a,b]上的積分和的極限。這里應注意定積分與不定積分之間的關系:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函數表達式,它們僅僅在數學上有一個計算關系(牛頓-萊布尼茨公式),其它一點關系都沒有!一個函數,可以存在不定積分 ...

Wed Oct 18 06:48:00 CST 2017 0 2055
變量微積分筆記24——分部積分

  不是所有被積函數都能解析地寫出原函數。對於那些可能寫出來的函數,也需要一定的積分技巧才能隨心所欲,分部積分正是其中很重要的一種技巧。 基本公式   部分積分演變自積分的乘法法則: 示例1   看起來很難對付,現在嘗試用部分積分解決。   令u = lnx,u’ = (lnx ...

Fri Nov 24 06:42:00 CST 2017 0 1458
變量微積分筆記14——微積分第一基本定理

微積分第一基本定理   如果F’(x) = f(x),那么:   如果將F用不定積分表示,F =∫f(x)dx,微積分第一基本定理可以看作為是兩個不定積分賦予特定的值,再用符號連接起來,計算具體的數值。   這里引入一個新符號:   於是: 示例1   示例 ...

Wed Oct 25 06:43:00 CST 2017 0 4554
變量微積分筆記15——微積分第二基本定理

微積分第二基本定理   這里需要注意t與x的關系,它的意思是一個函數能夠找到相應的積分方式去表達。如果F’=f,則:   下面是第二基本定理的證明。   證明需要采用畫圖法,如上圖所示,曲線是y=f(x),兩個陰影部分的面積分別是G(x)和ΔG(x),其中:   當Δx足夠 ...

Wed Nov 01 06:44:00 CST 2017 0 4471
變量微積分筆記21——空間向量場中的通量

   向量場 vector field(矢量場)是由一個向量對應另一個向量的函數。向量場廣泛應用於物理學,尤其是電磁場。   建立坐標系(x,y,z)。空間中每一點(x0,y0,z0)都可以用由原點 ...

Wed May 30 21:51:00 CST 2018 1 1698
變量微積分筆記29——反常積分和瑕積分

  我們已經學習了有限區間上的積分,但對於無窮的情況和區間上有奇點的情況仍無法理解。這就需要無窮積分和瑕積分來處理了,它們看起來十分有趣。 增長和衰減速率   通過上一章的內容,我們已經可以做出一些總結,在洛必達法則中,如果f(x) << g(x)且f,g > 0,那么當x ...

Sat Dec 09 06:36:00 CST 2017 0 9356
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM