線積分或路徑積分是積分的一種。在數學中,線積分的積分函數的取值沿的不是區間,而是特定的曲線,稱為積分路徑。在物理學上,線積分是質點在外力作用下運動一段距離后總功。 線積分 在物理學上,力所做的功等於力與位移的乘積;更嚴格地說,力在足夠小的距離上做的功等於力的向量與位移向量的點積 ...
定積分是積分的一種,是函數f x 在區間 a,b 上的積分和的極限。這里應注意定積分與不定積分之間的關系:若定積分存在,則它是一個具體的數值 曲邊梯形的面積 ,而不定積分是一個函數表達式,它們僅僅在數學上有一個計算關系 牛頓 萊布尼茨公式 ,其它一點關系都沒有 一個函數,可以存在不定積分,而不存在定積分,也可以存在定積分,而不存在不定積分。一個連續函數,一定存在定積分和不定積分 若只有有限個間斷 ...
2017-10-17 22:48 0 2055 推薦指數:
線積分或路徑積分是積分的一種。在數學中,線積分的積分函數的取值沿的不是區間,而是特定的曲線,稱為積分路徑。在物理學上,線積分是質點在外力作用下運動一段距離后總功。 線積分 在物理學上,力所做的功等於力與位移的乘積;更嚴格地說,力在足夠小的距離上做的功等於力的向量與位移向量的點積 ...
不是所有被積函數都能解析地寫出原函數。對於那些可能寫出來的函數,也需要一定的積分技巧才能隨心所欲,分部積分正是其中很重要的一種技巧。 基本公式 部分積分演變自積分的乘法法則: 示例1 看起來很難對付,現在嘗試用部分積分解決。 令u = lnx,u’ = (lnx ...
我們已經學習了有限區間上的積分,但對於無窮的情況和區間上有奇點的情況仍無法理解。這就需要無窮積分和瑕積分來處理了,它們看起來十分有趣。 增長和衰減速率 通過上一章的內容,我們已經可以做出一些總結,在洛必達法則中,如果f(x) << g(x)且f,g > 0,那么當x ...
微積分第一基本定理 如果F’(x) = f(x),那么: 如果將F用不定積分表示,F =∫f(x)dx,微積分第一基本定理可以看作為是兩個不定積分賦予特定的值,再用符號連接起來,計算具體的數值。 這里引入一個新符號: 於是: 示例1 示例 ...
微積分第二基本定理 這里需要注意t與x的關系,它的意思是一個函數能夠找到相應的積分方式去表達。如果F’=f,則: 下面是第二基本定理的證明。 證明需要采用畫圖法,如上圖所示,曲線是y=f(x),兩個陰影部分的面積分別是G(x)和ΔG(x),其中: 當Δx足夠 ...
微分在數學中的定義:由函數B=f(A),得到A、B兩個數集,在A中當dx靠近自己時,函數在dx處的極限叫作函數在dx處的微分,微分的中心思想是無窮分割。積分是微積分學與數學分析里的一個核心概念。通常分為定積分和不定積分兩種。直觀地說,對於一個給定的正實值函數,在一個實數區間上的定積分可以理解為 ...
均值 均值與定積分的關系 在數學筆記14——微積分第一基本定理中曾介紹過定積分與均值關系,如果y = f(x),則當n→∞時: 用定積分的幾何意義解釋這個等式,如下圖所示: 如果a = x0 < x1 < x2 < x3 < ……< xn ...
定積分除了計算面積外,還可以應用在計算體積上。 圓盤法 一條曲線y = f(x),如果曲線繞x軸旋轉,則曲線經過的區域將形成一個橄欖球形狀的體積,如下圖所示: 曲線繞x軸旋轉一周 現在要計算體積。我們依然按照黎曼和切片的思路去計算,只不過這回需要一點想象力 ...