(1)\(r(AB) \leq \min(r(A), r(B))\)
證明:\(r(AB) = \dim C(AB)\),\(C(AB) \subset C(A) \Longrightarrow \dim C(AB) \leq \dim C(A) = r(A)\)。則\(r(AB) \leq r(A)\)。同理,\(r(B^TA^T) \leq r(B^T) \Longrightarrow r(AB) \leq r(B)\)。
(2)\(r(A) = r(A^T)\)
證明:將\(A\)經初等行變換為階梯形矩陣\(J\),從而\(A\)的行秩 = \(J\)的行秩 = \(J\)的列秩 = \(A\)的列秩。
(3)設\(A, B\)是\(m \times n\)的矩陣,\(r(A + B) \leq r(A) + r(B)\)
證明:設\(A = (\alpha_1 ,\dots, \alpha_n), B = (\beta_1, \dots, \beta_n)\),其中\(\alpha_i, \beta_i\)均為\(m\)維列向量,\(i = 1, \dots, n\)。並設\(r(A) = s, r(B) = t\)。再設\(\alpha_1 ,\dots, \alpha_s\)為\(A\)的一個極大無關組,\(\beta_1, \dots, \beta_t\)為\(B\)的一個極大無關組。則
(4)\(r(AA^T) = r(A)\)
證明:由於\(r(AA^T) = r(A^TA)\),因此證明\(r(A^TA) = r(A)\)即可。我們只需要證明\(Ax = 0\)與\(A^TAx = 0\)同解。\(Ax = 0\)顯然是\(A^TAx = 0\)的解;\(A^TAx = 0 \Rightarrow x^TA^TAx = 0 \Rightarrow (Ax)^TAx = 0 \Rightarrow Ax = 0\)。因此兩個方程同解。
(5)\(r \pmatrix{A & O \\ O & B} = r(A) + r(B) \leq r\pmatrix{A & C \\ O & B}\)
(6)設\(A\)為\(s \times n\)矩陣,\(B\)為\(n \times m\)矩陣,則有\(r(A) + r(B) - n \leq r(AB)\)
證明:由初等變換可得:
即:\(\pmatrix{E_n & B \\ -A & E_s}\pmatrix{E_n & B \\ A & O}\pmatrix{E_n & -B \\ O & E_m} = \pmatrix{E_n & O \\ O & -AB}\),則:\(r(A) + r(B) \leq r\pmatrix{E_n & B \\ A & O} = r\pmatrix{E_n & O \\ O & -AB} = n + r(AB)\)。移項可得:\(r(A) + r(B) - n \leq r(AB)\)
(7)設\(A\)為\(n \times n\)矩陣,若\(A^2 = E\),那么有:\(r(A + E) + r(A - E) = n\)
證明:根據題意有\((A + E)(A - E) = O\),由不等式(6)得:\(r(A + E) + r(A - E) - n \leq 0\),即:\(r(A + E) + r(A - E) \leq n\)。因為\(r(A - B) \leq r(A) + r(B)\),得:\(r(A + E) + r(A - E) \geq r([(A + E) - (A - E)]) = r(2E) = n\)。原命題得證!
(8)設\(A\)為\(n \times n\)矩陣,且\(A^2 = A\),那么有\(r(A) + r(A - E) = n\)
證明方法同上!