柯西不等式


$\bullet$ 二維形式的柯西不等式:

$$(a^{2} + b^{2})(c^{2} + d^{2}) \geq (ac + bd)^{2}$$

  當且僅當 $ad = bc$ 時等號成立。

$\bullet$ 三維形式的柯西不等式:

$$(a_{1}^{2} + a_{2}^{2} + a_{3}^{2})(b_{1}^{2} + b_{2}^{2} + b_{3}^{2}) \geq (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2}$$

  當且僅當 $\frac{a_{1}}{b_{1}} = \frac{a_{2}}{b_{2}} = \frac{a_{3}}{b_{3}}$ 時等號成立。

$\bullet$ 一般形式的柯西不等式:

$$(a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2})(b_{1}^{2} + b_{2}^{2} + \cdots + b_{n}^{2}) \geq (a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n})^{2} \\
\Rightarrow \sum_{i=1}^{n}a_{i}^{2}\sum_{i=1}^{n}b_{i}^{2} \geq \left ( \sum_{i=1}^{n}a_{i}b_{i} \right )^{2}$$

  當且僅當 $\frac{a_{1}}{b_{1}} = \frac{a_{2}}{b_{2}} = \cdots = \frac{a_{n}}{b_{n}}$ 時等號成立。

  式子的左邊是兩個平方和的乘積,式子右邊是交叉項和的平方。

  證明:

      定義函數 $f(x)$ 為

$$f(x) = (a_{1} + b_{1}x)^{2} + (a_{2} + b_{2}x)^{2} + \cdots + (a_{n} + b_{n}x)^{2}$$

      將 $f(x)$ 轉化為二元函數的標准形式 $y = ax^{2} + bx + c$ 得

$$f(x) = (b_{1}^{2} + b_{2}^{2} + \cdots + b_{n}^{2})x^{2} + 2(a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n})x + (a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2})$$

      因為 $f(x) \geq 0$,所以它只有一個解或無解,即

$$\Delta = 4(a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n})^{2} - 4(b_{1}^{2} + b_{2}^{2} + \cdots + b_{n}^{2})(a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2}) \leq 0$$

      所以

$$(a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2})(b_{1}^{2} + b_{2}^{2} + \cdots + b_{n}^{2}) \geq (a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n})^{2}$$

      令函數 $f(x) = 0$,則每個平方項都必須為 $0$,即

$$a_{1} + b_{1}x = 0 \Rightarrow x = -\frac{a_{1}}{b_{1}}  \\
a_{2} + b_{2}x = 0 \Rightarrow x = -\frac{a_{2}}{b_{2}}  \\
\vdots \\
a_{n} + b_{n}x = 0 \Rightarrow x = -\frac{a_{n}}{b_{n}}$$

      則要使函數有零點,即 $\Delta = 0$,則必須有

$$\frac{a_{1}}{b_{1}} = \frac{a_{2}}{b_{2}} = \cdots = \frac{a_{n}}{b_{n}}$$

  證畢

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM