閔可夫斯基(Minkowski)不等式


對於任意的 $n$ 維向量 $a = \left \{ x_{1},x_{2},...,x_{n} \right \}$,$b = \left \{ y_{1},y_{2},...,y_{n} \right \}$,$p \geq 1$,有

$$\left ( \sum_{i=1}^{n}|x_{i} + y_{i}|^{p} \right )^{\frac{1}{p}} \leq \left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}} + \left ( \sum_{i=1}^{n}|y_{i}|^{p} \right )^{\frac{1}{p}}$$

證明:

$$\sum_{i=1}^{n}|x_{i} + y_{i}|^{p} = \sum_{i=1}^{n}|x_{i} + y_{i}|\cdot |x_{i} + y_{i}|^{p - 1} \leq \sum_{i=1}^{n}(|x_{i}| + |y_{i}|)\cdot |x_{i} + y_{i}|^{p - 1} \\
= \sum_{i=1}^{n}|x_{i}| \cdot |x_{i} + y_{i}|^{p - 1} + \sum_{i=1}^{n}|y_{i}| \cdot |x_{i} + y_{i}|^{p - 1} $$

   必然存在一個 $q \geq 1$,使得 $\frac{1}{p} + \frac{1}{q} = 1$,則根據 $Holder$ 不等式有

$$\sum_{i=1}^{n}|x_{i}| \cdot |x_{i} + y_{i}|^{p - 1} + \sum_{i=1}^{n}|y_{i}| \cdot |x_{i} + y_{i}|^{p - 1}  \leq \left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}} \cdot \left ( \sum_{i=1}^{n}|x_{i} + y_{i}|^{q(p-1)} \right )^{\frac{1}{q}} + \left ( \sum_{i=1}^{n}|y_{i}|^{p} \right )^{\frac{1}{p}} \cdot \left ( \sum_{i=1}^{n}|x_{i} + y_{i}|^{q(p-1)} \right )^{\frac{1}{q}} \\
= \left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}} \cdot \left ( \sum_{i=1}^{n}|x_{i} + y_{i}|^{p} \right )^{\frac{1}{q}} + \left ( \sum_{i=1}^{n}|y_{i}|^{p} \right )^{\frac{1}{p}} \cdot \left ( \sum_{i=1}^{n}|x_{i} + y_{i}|^{p} \right )^{\frac{1}{q}} \\
= \left \{ \left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}} + \left ( \sum_{i=1}^{n}|y_{i}|^{p} \right )^{\frac{1}{p}} \right \} \cdot \left ( \sum_{i=1}^{n}|x_{i} + y_{i}|^{p} \right )^{\frac{1}{q}}$$

   於是有

$$\sum_{i=1}^{n}|x_{i} + y_{i}|^{p}
 \leq  \left \{ \left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}} + \left ( \sum_{i=1}^{n}|y_{i}|^{p} \right )^{\frac{1}{p}} \right \} \cdot \left ( \sum_{i=1}^{n}|x_{i} + y_{i}|^{p} \right )^{\frac{1}{q}}$$

   兩邊同除以最后一項,便可得

$$\left ( \sum_{i=1}^{n}|x_{i} + y_{i}|^{p} \right )^{\frac{1}{p}} \leq \left ( \sum_{i=1}^{n}|x_{i}|^{p} \right )^{\frac{1}{p}} + \left ( \sum_{i=1}^{n}|y_{i}|^{p} \right )^{\frac{1}{p}}$$

證畢

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM