(1)\(r(AB) \leq \min(r(A), r(B))\)
证明:\(r(AB) = \dim C(AB)\),\(C(AB) \subset C(A) \Longrightarrow \dim C(AB) \leq \dim C(A) = r(A)\)。则\(r(AB) \leq r(A)\)。同理,\(r(B^TA^T) \leq r(B^T) \Longrightarrow r(AB) \leq r(B)\)。
(2)\(r(A) = r(A^T)\)
证明:将\(A\)经初等行变换为阶梯形矩阵\(J\),从而\(A\)的行秩 = \(J\)的行秩 = \(J\)的列秩 = \(A\)的列秩。
(3)设\(A, B\)是\(m \times n\)的矩阵,\(r(A + B) \leq r(A) + r(B)\)
证明:设\(A = (\alpha_1 ,\dots, \alpha_n), B = (\beta_1, \dots, \beta_n)\),其中\(\alpha_i, \beta_i\)均为\(m\)维列向量,\(i = 1, \dots, n\)。并设\(r(A) = s, r(B) = t\)。再设\(\alpha_1 ,\dots, \alpha_s\)为\(A\)的一个极大无关组,\(\beta_1, \dots, \beta_t\)为\(B\)的一个极大无关组。则
(4)\(r(AA^T) = r(A)\)
证明:由于\(r(AA^T) = r(A^TA)\),因此证明\(r(A^TA) = r(A)\)即可。我们只需要证明\(Ax = 0\)与\(A^TAx = 0\)同解。\(Ax = 0\)显然是\(A^TAx = 0\)的解;\(A^TAx = 0 \Rightarrow x^TA^TAx = 0 \Rightarrow (Ax)^TAx = 0 \Rightarrow Ax = 0\)。因此两个方程同解。
(5)\(r \pmatrix{A & O \\ O & B} = r(A) + r(B) \leq r\pmatrix{A & C \\ O & B}\)
(6)设\(A\)为\(s \times n\)矩阵,\(B\)为\(n \times m\)矩阵,则有\(r(A) + r(B) - n \leq r(AB)\)
证明:由初等变换可得:
即:\(\pmatrix{E_n & B \\ -A & E_s}\pmatrix{E_n & B \\ A & O}\pmatrix{E_n & -B \\ O & E_m} = \pmatrix{E_n & O \\ O & -AB}\),则:\(r(A) + r(B) \leq r\pmatrix{E_n & B \\ A & O} = r\pmatrix{E_n & O \\ O & -AB} = n + r(AB)\)。移项可得:\(r(A) + r(B) - n \leq r(AB)\)
(7)设\(A\)为\(n \times n\)矩阵,若\(A^2 = E\),那么有:\(r(A + E) + r(A - E) = n\)
证明:根据题意有\((A + E)(A - E) = O\),由不等式(6)得:\(r(A + E) + r(A - E) - n \leq 0\),即:\(r(A + E) + r(A - E) \leq n\)。因为\(r(A - B) \leq r(A) + r(B)\),得:\(r(A + E) + r(A - E) \geq r([(A + E) - (A - E)]) = r(2E) = n\)。原命题得证!
(8)设\(A\)为\(n \times n\)矩阵,且\(A^2 = A\),那么有\(r(A) + r(A - E) = n\)
证明方法同上!
