定理4.4 (切比雪夫不等式) 設隨機變量 \(X\) 的期望和方差均存在,則對任意 \(\varepsilon > 0\),有
\[P(|X - WX| \geq \varepsilon) \leq \displaystyle\frac{DX}{\varepsilon^2} \]
等價形式為
\[P(|X - WX| < \varepsilon) \geq 1 - \displaystyle\frac{DX}{\varepsilon^2} \]
證明 令
\[Y = \begin{cases}1& \omega \in \{ |X - EX| \geq \varepsilon \}, \\ 0& \text{其他}, \end{cases} \]
則 \(Y \leq \displaystyle\frac{(X - EX)^2}{\varepsilon^2}\),根據期望的性質,有
\[P(|X - WX| \geq \varepsilon) = EY \leq E\left[\displaystyle\frac{(X - EX)^2}{\varepsilon^2}\right] = \displaystyle\frac{DX}{\varepsilon^2}. \]
以上是書本上的證明,我初讀不理解,故在網上查閱其他形式的證明輔助理解,有效,如下:
命題 設隨機變量具有數學期望 \(E(X) = \mu\),方差 \(D(X) = \sigma^2\),則對任意的正數 \(\varepsilon\) 有 \(P\{ |X - \mu| \geq \varepsilon \} \leq \displaystyle\frac{\sigma^2}{\varepsilon^2}\) 或 \(P\{ |X - \mu| \leq \varepsilon \} \geq 1 - \displaystyle\frac{\sigma^2}{\varepsilon^2}\)
證明過程:
- \(X\) 為連續型則有
\[P\{ |X - \mu| > \varepsilon \} = \int_{|X - \mu| \geq \varepsilon}f(x)dx \leq \int_{-\infty}^{+\infty}\displaystyle\frac{(x - \mu)^2}{\varepsilon^2}f(x)dx = \displaystyle\frac{\sigma^2}{\varepsilon^2} \]
- \(X\) 為離散型則有
\[P\{ |X - \mu| \geq \varepsilon \} = \sum_{k \in |X - \mu| \geq \varepsilon}P_k \leq \sum_{k = 1}^{\infty}\displaystyle\frac{(x - \mu)^2}{\varepsilon^2}P_k = \displaystyle\frac{\sigma^2}{\varepsilon^2} \]
注:上面的離散型證明中的第一個求和符號下面的 \(k\) 后面的符號不確定是否是 \(\in\),原圖有些不清晰,以后有時間會求證.
參考:https://upload-images.jianshu.io/upload_images/1653736-41db91d1e56d9cab.png