花费 19 ms
激活函数(ReLU, Swish, Maxout)

神经网络中使用激活函数来加入非线性因素,提高模型的表达能力。 ReLU(Rectified Linear Unit,修正线性单元) 形式如下: \[\begin{equation} f(x)= \begin{cases} 0, & {x\leq 0} \\\\ x ...

Sat Feb 18 21:26:00 CST 2017 4 49739
神经网络与深度学习之激活函数

激活函数: 传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid、Tanh-Sigmoid)被视为神经网络的核心所在.从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果,通过对加权的输入进行 ...

Mon Oct 31 06:04:00 CST 2016 0 9406
深度学习Keras框架笔记之激活函数详解

激活函数也是神经网络中一个很重的部分。每一层的网络输出都要经过激活函数。比较常用的有linear,sigmoid,tanh,softmax等。Keras内置提供了很全的激活函数,包括像LeakyReLU和PReLU这种比较新的激活函数。 一、激活函数的使用 常用 ...

Sun Mar 18 01:00:00 CST 2018 0 5317
激活函数sigmoid、tanh、relu、Swish

激活函数的作用主要是引入非线性因素,解决线性模型表达能力不足的缺陷   sigmoid函数可以从图像中看出,当x向两端走的时候,y值越来越接近1和-1,这种现象称为饱和,饱和意味着当x=100和x=1000的映射结果是一样的,这种转化相当于将1000大于100的信息丢失了很多,所以一般需要归一化 ...

Thu Sep 27 06:24:00 CST 2018 0 3885
Softmax 损失-梯度计算

本文介绍Softmax运算、Softmax损失函数及其反向传播梯度计算, 内容上承接前两篇博文 损失函数 & 手推反向传播公式。 Softmax 梯度 设有K类, 那么期望标签y形如\([ ...

Mon Jul 23 00:54:00 CST 2018 0 3771
CReLU激活函数

转载自CSDN, CReLU激活函数 CReLU 一种改进 ReLU 激活函数的文章,来自ICML2016. 1. 背景介绍 整个文章的出发点来自于下图的统计现象:  为了看懂上图。 (1)首先介绍一下余弦相似度(cos距离)的概念  cos距离的取值范围 ...

Sat Sep 22 06:02:00 CST 2018 0 2985
ML 激励函数 Activation Function (整理)

本文为内容整理,原文请看url链接,感谢几位博主知识来源 一、什么是激励函数   激励函数一般用于神经网络的层与层之间,上一层的输出通过激励函数的转换之后输入到下一层中。神经网络模型是非线性的,如 ...

Tue Aug 07 19:48:00 CST 2018 0 3142
记-CNN中的激活函数

1.概念   激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。 2.特性   可微性: 当优化方法 ...

Thu Apr 02 21:17:00 CST 2020 0 1808

 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM