第一章 神经网络与深度学习(Neural Network & Deeplearning) DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络 ...
第一章 神经网络与深度学习(Neural Network & Deeplearning) DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络 ...
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录。 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学 ...
更多笔记请火速前往 DeepLearning.ai学习笔记汇总 本周我们将学习如何配置训练/验证/测试集,如何分析方差&偏差,如何处理高偏差、高方差或者二者共存的问题,如何在神经网络 ...
1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如 ...
一、进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差。想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 ...
一、调试处理 week2中提到有如下的超参数: α hidden units mini-batch size β layers learning rate decay ...
一、深层神经网络 深层神经网络的符号与浅层的不同,记录如下: 用\(L\)表示层数,该神经网络\(L=4\) \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[ ...
一、为什么是ML策略 如上图示,假如我们在构建一个喵咪分类器,数据集就是上面几个图,训练之后准确率达到90%。虽然看起来挺高的,但是这显然并不具一般性,因为数据集太少了。那么此时可以想到的ML策略 ...