目录 梯度下降法更新参数 Adam 更新参数 Adam + 学习率衰减 Adam 衰减的学习率 References 本文先介绍一 ...
目录 梯度下降法更新参数 Adam 更新参数 Adam + 学习率衰减 Adam 衰减的学习率 References 本文先介绍一 ...
简介 Adam 优化算法的基本机制 Adam 算法和传统的随机梯度下降不同。随机梯度下降保持单一的学习率(即 alpha)更新所有的权重,学习率在训练过程中并不会改变。而 Adam 通过计算梯度的 ...
1. 前言 今天我们聊一聊机器学习和深度学习里面都至关重要的一个环节,优化损失函数。我们知道一个模型只有损失函数收敛到了一定的值,才有可能会有好的结果,降低损失方式的工作就是优化方法需要做的事。下面 ...
深度学习中的优化问题通常指的是:寻找神经网络上的一组参数θ,它能显著地降低代价函数J(θ)。针对此类问题,研究人员提出了多种优化算法,Sebastian Ruder 在《An overview ...
1.简述 这篇文章是对Adam各种相关资料了解后进行一些精简的内容。如果你想仔细研究某个技术请跳转至unity相关页面。 Adam官方页面: https://unity3d.com/c ...
在上一篇博客《TensorFlow之DNN(一):构建“裸机版”全连接神经网络》 中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦)和正则化方 ...
1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如 ...
目前,深度神经网络的参数学习主要是通过梯度下降法来寻找一组可以最小化结构风险的参数。在具体实现中,梯度下降法可以分为:批量梯度下降、随机梯度下降以及小批量梯度下降三种形式。根据不同的数据量和参数量,可 ...
1. 梯度下降 沿着目标函数梯度的反方向搜索极小值。 式中,$\theta$是模型参数,$J(\theta)$目标函数(损失函数),$\eta$是学习率。 2. 随机梯度下降(SGD) ...
深度学习中常用的优化器简介 SGD mini-batch SGD 是最基础的优化方法,是后续改良方法的基础。下式给出SGD的更新公式 \[\theta_t = \theta_{t-1} - ...