cross entropy 交叉熵的概念网上一大堆了,具体问度娘,这里主要介绍深度学习中,使用交叉熵作为类别分类。 1、二元交叉熵 binary_cross_entropy 我们通常见 ...
cross entropy 交叉熵的概念网上一大堆了,具体问度娘,这里主要介绍深度学习中,使用交叉熵作为类别分类。 1、二元交叉熵 binary_cross_entropy 我们通常见 ...
对于分类问题的神经网络最后一层的函数做如下知识点总结: sigmoid和softmax一般用作神经网络的最后一层做分类函数(备注:sigmoid也用作中间层做激活函数); 对于类别数量大于2的分类问题,如果每个类别之间互斥,则选用softmax函数(例如:类别为牡丹花、玫瑰花、菊花 ...
激活函数的作用主要是引入非线性因素,解决线性模型表达能力不足的缺陷 sigmoid函数可以从图像中看出,当x向两端走的时候,y值越来越接近1和-1,这种现象称为饱和,饱和意味着当x=100和x=1000的映射结果是一样的,这种转化相当于将1000大于100的信息丢失了很多,所以一般需要归一化 ...
我们希望并期望我们的网络能够从他们的错误中学习的很快,首先看一个小例子。 我们将训练这个神经元做一些非常简单的事情:把输入的1转换成输出的0。当然,如果我们不是用学习算法,可以很容易地计算 ...
 sigmoid(x) 函数定义: \[\begin{align*} \sigma(x) &= \frac{1}{1+e^{-x}} \\ {\sigma \prime (x)} &= \sigma(x)(1-\sigma(x)) \end{align*} \] 令 ...
本系列文章允许转载,转载请保留全文! 【请先阅读】【说明&总目录】http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 梯度下降法 (Gr ...
简介 Logistic回归是机器学习中最常用最经典的分类方法之一,有的人称为逻辑回归或逻辑斯蒂回归。虽然它称为回归模型,但是却处理的是分类问题,这主要是因为它的本质是一个线性模型加上一个映射函数sigmoid,将线性模型得到的连续结果映射到离散型上。它常用于二分类问题,在多分类问题的推广叫做 ...