正交向量 正交是垂直的另一種說法,她意味着在 \(n\) 維空間中,這些向量的夾角是90度。 兩個向量正交的條件: \[x^Ty=0 \] \(x、y\) 表示列向量,\(x^T\) 表示行向量,這個式子就是矩陣乘法中的行點乘列。如果結果為0,那么就說明兩個向量正交。 證明 ...
正交向量 正交 orthogonal :垂直 正交子空間 子空間S和子空間T正交:S中每個向量與T中每個向量正交 矩陣A的行空間和A的零空間正交,且形成一對正交補 零空間包含所有垂直於行空間的向量 : 簡證: 對上述n個式子累和即證。 同理, 列空間和左零空間正交 求解Ax b 無解情況 A T A 為對稱的方陣,有如下性質: A T A可逆 等價於 A各列線性無關。 ...
2021-10-11 20:19 0 198 推薦指數:
正交向量 正交是垂直的另一種說法,她意味着在 \(n\) 維空間中,這些向量的夾角是90度。 兩個向量正交的條件: \[x^Ty=0 \] \(x、y\) 表示列向量,\(x^T\) 表示行向量,這個式子就是矩陣乘法中的行點乘列。如果結果為0,那么就說明兩個向量正交。 證明 ...
零向量和任意向量正交。 正交子空間 正交性還可以推廣到子空間,如果說一個子空間V和另一個子空間W ...
向量內積 這個基本上是中學當中數學課本上的概念,兩個向量的內積非常簡單,我們直接看公式回顧一下: \[X \cdot Y = \sum_{i=1}^n x_i*y_i \] 這里X和Y都是n維的向量,兩個向量能夠計算內積的前提是兩個向量的維度一樣。從上面公式可以看出來,兩個 ...
我們在初中就應該學過投影。那么什么是投影呢?形象點說,就是將你須要投影的東西上的每一點向你要投影的平面作垂線,垂線與平面的交點的集合就是你的投影。 注意這里我們的投影是向量的投影,幾何的投影(並不一定是垂直投影的)可見度娘百科。 相同的,我們從簡單的二維投影來開始討論 ...
向量空間(Vector Space) 用表示,表示n為向量空間 向量空間的性質: 向量空間內的向量進行相加相減,乘以或者除以一個標量,或者向量之間的線性組合得到的新向量還是位於該空間中。 非向量空間舉例,如二維向量的第一象限空間,取其空間內任意一個向量,如,對該向量進行乘以-1,得到 ...
引言 一般的課本上都會告訴我們判斷兩個向量是否正交可以通過它們的點積為0判斷,那么到底為什么? 向量 一個向量是有方向和長度的,我們記向量\(\overrightarrow{a}\)的長度為\(\left\|a\right\|\),也叫向量的長度為模。那么向量的模是怎么計算 ...
我們先來看圖,看看這個方法的操作過程,等一下,我找找我的大學的線性代數課本,找到啦!(哈哈,雖然讀研了,因為我是菜鳥,所以還是隨時帶着)如下圖所示: 大部分人在考研時候都是直接背下來這個正交化過程對吧,或者也根本沒有搞懂為啥這樣操作就能夠得到正交化的基,現在就結合我的理解來分析一下這個原理 ...
在本系列中,我的個人見解將使用斜體標注。每篇文章的最后,我將選擇摘錄一些例題。由於文章是我獨自整理的,缺乏審閱,難免出現錯誤,如有發現歡迎在評論區中指正。 目錄 Part 1:子空間 Part 2:有限維向量空間 Part 3:線性無關與線性相關 例題 ...