原文:【實變函數】五、微分與積分

實變函數 . 微分與積分 本文主要就微積分基本定理的表現形式與成立條件進行討論,我們將積分區域局限於 mathbb R 。文中所提到的證明點此查看。 目錄 實變函數 . 微分與積分 . 單調函數與有界變差函數 . 不定積分 . 微積分基本定理 . 單調函數與有界變差函數 單調函數是一類基礎而又重要的函數,因為我們在下面將經常使用這類函數,如不定全變差函數等。Lebesgue定理給出了單調函數的一 ...

2021-06-27 19:06 0 414 推薦指數:

查看詳情

函數】四、Lebesgue積分

函數】4. Lebesgue積分 本文介紹Lebesgue積分的定義,並給出積分的一些常用性質。注意Lebesgue積分的定義是從非負函數向一般函數擴展的,這依托於一般函數的分解\(f(x)=f^+(x)-f^-(x)\)。文中所提到的證明點此查看。 目錄 【 ...

Mon Jun 28 03:05:00 CST 2021 0 453
函數】證明(二)

證明2 2-1 單點的外測度為\(0\),矩體的外測度為它的體積。 單點集的外測度為\(0\)是因為,可作一開矩體,使得\(x_0\in I\)且\(|I|\)任意小。 設\(I\) ...

Mon Jun 28 02:54:00 CST 2021 0 212
函數】證明(一)

證明1 1-1 若\(E\)是開集,則\(E^c\)是閉集。 設\(\{x_k\}\in E^c\)使得\(x_k\to y\)。若\(y\in E\),則因\(E\)是開集,存在某\ ...

Mon Jun 28 02:53:00 CST 2021 0 157
函數】三、可測函數

函數】3. 可測函數 本章介紹可測函數,是勒貝格積分的主體,它與階梯函數、連續函數、多項式等都有一定的聯系。文中所提到的證明點此查看。 目錄 【函數】3. 可測函數 1. 可測函數 2. 可測函數列的收斂 3. 依測度收斂 ...

Mon Jun 28 03:04:00 CST 2021 0 532
函數-集合與點集

集合 遞減集合列 遞增集合列 上極限集 下極限集 集合語言的相互轉化 任意: 交集 存在:並集 映射 單射: 一對一 滿射: 每個元素都有對應的像 ...

Fri Jun 14 22:20:00 CST 2019 0 435
函數-集合論(1)

函數-集合論(1) 1. 集合的運算 (一) 並與交   (i) 滿足結合律,交換律   (ii) 分配律 \[A\cap(\bigcup\limits_{\alpha\in I}B_\alpha)=\bigcup\limits_{\alpha\in I}(A\cap B_ ...

Tue May 05 21:06:00 CST 2020 0 862
函數例題(3)

例題(三) 主題:\(\mathbb{R}^n\)上的拓撲 例1 設\(F\)是\(\mathbb{R}^n\)中的有界閉集,\(G\)是\(\mathbb{R}^n\)中開集且\(F\s ...

Thu Apr 01 00:29:00 CST 2021 0 313
函數】二、測度理論

函數】2. 測度理論 本文對測度理論進行介紹,這一部分是勒貝格積分的基礎,承上啟下。文中所提到的證明點此查看。 目錄 【函數】2. 測度理論 1. 外測度 2. 可測集 3. 正測度集 4. 不可測集 ...

Mon Jun 28 03:01:00 CST 2021 0 530
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM