在線性代數第二節開始之前,有一些感悟要先分享一下。最近線代專欄第二節之所以拖了這么久,一方面時生活方面有所懈怠,一方面是發現要想真正搞好一門學問,必須要熱愛這門學問。最明顯的例子就是當我們在學習數學的時候,如果僅僅是為了使用公式,那大可不必來探究數學,只需要查一查公式,然后知道公式的運用場景就好 ...
在本系列中,我的個人見解將使用斜體標注。每篇文章的最后,我將選擇摘錄一些例題。由於文章是我獨自整理的,缺乏審閱,難免出現錯誤,如有發現歡迎在評論區中指正。 目錄 Part :子空間 Part :有限維向量空間 Part :線性無關與線性相關 例題 Part :子空間 子空間 subspace 如果 V 的子集 U 采用與 V 相同的加法和標量乘法 也是向量空間,則稱 U 是 V 的子空間。 如果 ...
2021-01-31 02:19 0 316 推薦指數:
在線性代數第二節開始之前,有一些感悟要先分享一下。最近線代專欄第二節之所以拖了這么久,一方面時生活方面有所懈怠,一方面是發現要想真正搞好一門學問,必須要熱愛這門學問。最明顯的例子就是當我們在學習數學的時候,如果僅僅是為了使用公式,那大可不必來探究數學,只需要查一查公式,然后知道公式的運用場景就好 ...
向量空間(Vector Space) 用表示,表示n為向量空間 向量空間的性質: 向量空間內的向量進行相加相減,乘以或者除以一個標量,或者向量之間的線性組合得到的新向量還是位於該空間中。 非向量空間舉例,如二維向量的第一象限空間,取其空間內任意一個向量,如,對該向量進行乘以-1,得到 ...
讓線性代數不再是靜態的一門學科,有了線性映射,線性空間中的向量就可以動起來。這一章同時也在告訴讀者,向 ...
正交向量 正交(orthogonal):垂直 正交子空間 子空間S和子空間T正交:S中每個向量與T中每個向量正交 矩陣A的行空間和A的零空間正交 ...
正交向量 正交是垂直的另一種說法,她意味着在 \(n\) 維空間中,這些向量的夾角是90度。 兩個向量正交的條件: \[x^Ty=0 \] \(x、y\) 表示列向量,\(x^T\) 表示行向量,這個式子就是矩陣乘法中的行點乘列。如果結果為0,那么就說明兩個向量正交。 證明 ...
置換矩陣 置換矩陣(permutation)是行進行重新排列的單位矩陣,矩陣A左乘置換矩陣可以互換相應的行。 對n階單位陣, 有n!個置換矩陣 性質: ...
線性代數導論 - #6 向量空間、列空間、Rn與子空間 讓我們回想一下#1的內容,當我們在用向量的新視角看待線性方程組時,曾經提到以“向量的圖像”作為代數學與幾何學橋梁的想法。 而現在,讓我們沿着這個想法深入探索下去,將其作為開啟線性代數核心學習的鑰匙。 引入新概念:向量空間 ...
1. 投影 向量 $ b = (2, 3, 4)$ 在 \(z\) 軸上和在 \(xy\) 平面上的投影是什么,哪個矩陣能產生到一條線上和到一個平面的投影? 當 \(b\) 被投影到 \(z\) 軸上時,它的投影 \(p\) 就是 \(b\) 沿着那條線的部分。當 \(b\) 被投影到一個平面 ...