原文:單變量微積分筆記26——參數方程

參數方程的示例 現在有兩個函數,x acost和y asint,如果將t看作時間,我們感興趣的第一個問題是這兩個函數將形成什么曲線 x y a cos t a sin t a 很明顯是一個圓。 另一個關注的問題是隨着時間t的變化,在這個圓上的運動方向,包括什么時間上位於圓的哪個位置,可以把它想象成行星的軌道。 可以通過描點解決。 t , x, y acos , sin a, t , x, y ac ...

2017-11-29 22:42 0 2242 推薦指數:

查看詳情

變量微積分筆記13——定積分

  定積分積分的一種,是函數f(x)在區間[a,b]上的積分和的極限。這里應注意定積分與不定積分之間的關系:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函數表達式,它們僅僅在數學上有一個計算關系(牛頓-萊布尼茨公式),其它一點關系都沒有!一個函數,可以存在不定積分 ...

Wed Oct 18 06:48:00 CST 2017 0 2055
變量微積分筆記12——常微分方程和分離變量

常微分方程   含有未知函數的導數,如   的方程是微分方程。 一般的,凡是表示未知函數、未知函數的導數與自變量之間的關系的方程,叫做微分方程。未知函數是一元函數的,叫常微分方程;未知函數是多元函數的叫做偏微分方程。本文主要介紹常微分方程。   概念往往令人迷惑,還是看看實際的例子 ...

Fri Oct 13 06:48:00 CST 2017 0 1576
變量微積分筆記24——分部積分

  不是所有被積函數都能解析地寫出原函數。對於那些可能寫出來的函數,也需要一定的積分技巧才能隨心所欲,分部積分正是其中很重要的一種技巧。 基本公式   部分積分演變自積分的乘法法則: 示例1   看起來很難對付,現在嘗試用部分積分解決。   令u = lnx,u’ = (lnx ...

Fri Nov 24 06:42:00 CST 2017 0 1458
變量微積分筆記14——微積分第一基本定理

微積分第一基本定理   如果F’(x) = f(x),那么:   如果將F用不定積分表示,F =∫f(x)dx,微積分第一基本定理可以看作為是兩個不定積分賦予特定的值,再用符號連接起來,計算具體的數值。   這里引入一個新符號:   於是: 示例1   示例 ...

Wed Oct 25 06:43:00 CST 2017 0 4554
變量微積分筆記15——微積分第二基本定理

微積分第二基本定理   這里需要注意t與x的關系,它的意思是一個函數能夠找到相應的積分方式去表達。如果F’=f,則:   下面是第二基本定理的證明。   證明需要采用畫圖法,如上圖所示,曲線是y=f(x),兩個陰影部分的面積分別是G(x)和ΔG(x),其中:   當Δx足夠 ...

Wed Nov 01 06:44:00 CST 2017 0 4471
變量微積分筆記29——反常積分和瑕積分

  我們已經學習了有限區間上的積分,但對於無窮的情況和區間上有奇點的情況仍無法理解。這就需要無窮積分和瑕積分來處理了,它們看起來十分有趣。 增長和衰減速率   通過上一章的內容,我們已經可以做出一些總結,在洛必達法則中,如果f(x) << g(x)且f,g > 0,那么當x ...

Sat Dec 09 06:36:00 CST 2017 0 9356
變量微積分筆記17——通量

  在流體運動中,通量是單位時間內流經某單位面積的某屬性量,是表示某屬性量輸送強度的物理量。在大氣科學中,包含動量通量、熱通量、物質通量和水通量。   本章關於向量和點積的相關知識課參考《線性代數筆記3——向量2(點積)》。 通量   通量實際上是一種線積分。如果有一條平面曲線C和這個平面 ...

Fri May 04 02:48:00 CST 2018 2 3708
變量微積分學習筆記

本篇博客只是博主為了記錄重要概念寫的 本博客內的文章均可通過百度“漫步微積分”找到 三:如何計算切線的斜率 四:導數的定義 六:極限 七:連續函數 ...

Thu Jun 07 00:57:00 CST 2018 12 819
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM