4.3 等比數列及其前n項和


\(\mathbf{{\large {\color{Red} {歡迎到學科網下載資料學習}} } }\)【【高分突破系列】 高二數學下學期同步知識點剖析精品講義
\(\mathbf{{\large {{\color{Red} {跟貴哥學數學,so \quad easy!}} }}}\)

選擇性必修第二冊同步提高,難度3顆星!

模塊導圖

知識剖析

等比數列的定義

如果一個數列從第二項起,每一項與它的前一項的比等於同一個常數,那么這個數列叫做等比數列,這個常數叫做等比數列的公比,記為\(q\).
代數形式:\(\dfrac{a_{n}}{a_{n-1}}=q\)(\(q\)是常數,\(n≥2\)) 或\(\dfrac{a_{n+1}}{a_{n}}=q\)(\(q\)是常數,\(n∈ N^*\))

\({\color{Red}{Eg}}\) \(\dfrac{a_{n}}{a_{n-1}}=2(n \geq 2)\)\(\Rightarrow\left\{a_{n}\right\}\)是公比為\(2\)的等比數列;
\(\dfrac{a_{n+1}}{a_{n}}=-3\)\(\Rightarrow\left\{a_{n}\right\}\)是公比為\(-3\)的等比數列;
\(\dfrac{a_{n+1}}{a_{n}}=4 n\)\(\Rightarrow\left\{a_{n}\right\}\)不是等比數列;

\({\color{Red}{解釋}}\)
所謂常數就是與\(n\)無關;等比數列中\(a_n≠0\),\(q≠0\)
偶數項的正負、奇數項的正負相同.

\({\color{Red}{Eg}}\)\(-1\),\(b_1\),\(b_2\),\(b_3\),\(-4\)成等比數列,則\(b_2=\)\(\underline{\quad \quad}\).
解:\(b_2^2=-1×(-4)=4⇒b_2=±2\)
\(b_2=-1\cdot q^2<0\),故\(b_2=-2\).
\({\color{Red}{(b_2與-1,-4均是奇數項,符號相同)}}\)
 

等比中項

\(a ,b ,c\)成等比數列,則\(b\)\(a\)\(c\)的等差中項,則\(b^2=ac\)
 

證明一個數列是等比數列的方法

① 定義法:\(\dfrac{a_{n}}{a_{n-1}}=q\)(\(q\)是常數,\(n≥2\)),則\(\{a_n\}\)是等比數列;
② 中項法:\(a_{n+1}^{2}=a_{n} a_{n+2}\)\((a_n≠ 0 ,n∈ N^*)\),則\(\{a_n\}\)是等比數列;
③ 通項公式法:若數列的通項公式是形如\(a_n=k\cdot q^n\)(\(k ,q\)是不為\(0\)常數),則數列\(\{a_n\}\)是等比數列;
④ 前\(n\)項和法:若數列的前\(n\)項和是形如\(S_n=k\cdot q^n-k\)(\(k ,q\)是常數且\(k≠0\)\(q≠0\)\(1\)),則數列\(\{a_n\}\)是等比數列.
 

通項公式

等比數列\(\{a_n\}\)的首項為\(a_1\),公比為\(q\),則\(a_n=a_1 q^{n-1}\)(由定義與累乘法可得)
 

\(n\)項和

等比數列\(\{a_n\}\)的首項為\(a_1\),公比為\(q\),則其前\(n\)項和為

\[S_{n}= \begin{cases}n a_{1} & (q=1) \\ \dfrac{a_{1}\left(1-q^{n}\right)}{1-q} & (q \neq 1)\end{cases} \]

(由錯位相減法可證)
\({\color{Red}{注}}\)使用時注意公比是否等於\(1\),若不確定,使用時需要分類討論.
 

基本性質

(其中\(m ,n ,p ,t∈N^*\))
\(\{a_n\}\)是首項為\(a_1\), 公比為\(q\)的等比數列,那么
\((1)\)\(m+n=p+t\), 則\(a_m a_n=a_p a_t\)
\((2)\)\(a_n=a_m q^{n-m}\)
\((3)\)\(q^{n-m}=\dfrac{a_{n}}{a_{m}}\)
\((4)\)數列\(\left\{\lambda a_{n}\right\}\)(\(λ\)是不為零的常數)仍是公比為\(q\)的等比數列;若數列\(\{b_n\}\)是公比為\(t\)的等比數列,則數列\(\left\{a_{n} b_{n}\right\}\)是公比為\(q\cdot t\)的等比數列;
\((5)\)下標成等差數列且公差為\(m\)的項\(a_k\),\(a_{k+m}\),\(a_{k+2 m}\),…(\(k ,m∈N^*\))組成公比為\(q^m\)的等比數列;
\((6)\)\(q≠-1\),則\(S_n\),\(S_{2n}-S_n\),\(S_{3n}-S_{2n}\),…成等比數列;
(\(∵q=-1\)\(n\)是偶數時,\(S_n=0\))
 

經典例題

【題型一】等比數列的判斷與證明

【典題1】【多選題】已知數列\(\{a_n\}\)是等比數列,那么下列數列一定是等比數列的是(  )
A.\(\left\{\dfrac{1}{a_{n}}\right\}\) \(\qquad \qquad \qquad \qquad\)B.\(\left\{\log _{2} a_{n}\right\}\)\(\qquad \qquad \qquad \qquad\)C.\(\left\{a_{n} a_{n+1}\right\}\) \(\qquad \qquad \qquad \qquad\)D.\(\left\{a_{n}+a_{n+1}+a_{n+2}\right\}\)
【解析】由題意,可設等比數列\(\{a_n\}\)的公比為\(q(q≠0)\),則\(a_n=a_1 q^{n-1}\)
對於\(A\)\(\dfrac{1}{a_{n}}=\dfrac{1}{a_{1} q^{n-1}}=\dfrac{1}{a_{1}}\left(\dfrac{1}{q}\right)^{n-1}\)
(等比數列通項公式形如指數型\(a_n=A\cdot B^n\))
\(∴\)數列\(\left\{\dfrac{1}{a_{n}}\right\}\)是一個以\(\dfrac{1}{a_{1}}\)為首項,\(\dfrac{1}{q}\)為公比的等比數列;
對於\(B\):若\(a_n>0\),則\(\log _{2} a_{n}=\log _{2}\left(a_{1} q^{n-1}\right)\)\(=\log _{2} a_{1}+(n-1) \log _{2} q\)
\(∴\)數列\(\left\{\log _{2} a_{n}\right\}\)是一個以\(\log _{2} a_{1}\)為首項,\(\log _{2} q\)為公差的等差數列;
對於\(C\)\(\because \dfrac{a_{n+1} \cdot a_{n+2}}{a_{n} \cdot a_{n+1}}=\dfrac{a_{n+2}}{a_{n}}=\dfrac{a_{1} \cdot q^{n+1}}{a_{1} \cdot q^{n-1}}=q^{2}\)
\(∴\)數列\(\left\{a_{n}+a_{n+1}+a_{n+2}\right\}\)是一個以\(q^2\)為公比的等比數列
對於\(D\)\(\because \dfrac{a_{n+1}+a_{n+2}+a_{n+3}}{a_{n}+a_{n+1}+a_{n+2}}\)\(=\dfrac{q\left(a_{n}+a_{n+1}+a_{n+2}\right)}{a_{n}+a_{n+1}+a_{n+2}}=q\)
\(∴\)數列\(\left\{a_{n}+a_{n+1}+a_{n+2}\right\}\)是一個以\(q\)為公比的等比數列.
故選:\(ACD\)
【點撥】
① 判定等比數列常用定義法:\(\dfrac{a_{n+1}}{a_{n}}=q\)(\(q\)是常數,\(n∈ N^*\))\(⇒\{a_n\}\)是等比數列;
② 等比數列通項公式形如指數型\(a_n=k\cdot q^n\),在選擇填空題運用.
 

【典題2】已知數列\(\{a_n\}\)的前\(n\)項和為\(S_n\),且滿足\(a_{n+1}=S_{n}+n+1\)\(\left(n \in N^{*}\right)\),\(a_1=1\)
求證\(\left\{a_{n}+1\right\}\)為等比數列,並求\(a_n\).
【解析】證明:\(\because a_{n+1}=S_{n}+n+1\left(n \in N^{*}\right)\)
\({\color{Red}{(遇到a_n與S_n的等式可想到a_{n}=\left\{\begin{array}{cc} S_{1}, & n=1 \\ S_{n}-S_{n-1}, & n \geq 2 \end{array}\right. )}}\)
\(n≥2\)時,\(a_{n}=S_{n-1}+n\)
兩式相減得\(a_{n+1}-a_{n}=S_{n}+n+1-\left(S_{n-1}+n\right)=a_{n}+1\)
\(\therefore a_{n+1}+1=2 a_{n}+2=2\)\(\left(a_{n}+1\right)(n \geq 2)\)
\({\color{Red}{(不要漏了大前提:n≥2,要證明\{a_{n}+1\}為等比數列,還要判斷a_{n+1}+1=2(a_{n}+1)當n=1時也成立)}}\)
而對於\(a_{n+1}=S_{n}+n+1\left(n \in N^{*}\right)\)
\(n=1\)時有\(a_2=S_1+2=a_1+2=3\)
\(a_2=3\),\(a_1=1\)滿足\(a_{n+1}+1=2\left(a_{n}+1\right)\)
\(\therefore a_{n+1}+1=2\left(a_{n}+1\right)\)\(\left(n \in N^{*}\right)\)
\(\therefore\left\{a_{n}+1\right\}\)為等比數列,首項為\(a_1+1=2\),公比為\(2\)的等比數列,
\(\therefore a_{n}+1=2 \cdot 2^{n-1}=2^{n}\),
\(∴a_n=2^n-1\).
【點撥】數列問題中,特別要注意\(n\)的取值范圍,比如\(n≥2\)\(n∈N^*\),要確定好.
 

【典題3】設數列\(\{a_n\}\)的首項\(a_1\)為常數,且\(a_{n}=3^{n-1}-2 a_{n-1}\)\((n≥2)\)
(1) 判斷數列\(\left\{a_{n}-\dfrac{3^{n}}{5}\right\}\)是否為等比數列,請說明理由;
(2)\(S_n\)是數列\(\{a_n\}\)的前\(n\)項的和,若\(\left\{S_{n}\right\}\)是遞增數列,求\(a_1\)的取值范圍.
【解析】(1)當\(n≥2\)時,\(a_{n}-\dfrac{3^{n}}{5}=3^{n-1}-2 a_{n-1}-\dfrac{3^{n}}{5}\)\(=2 \cdot \dfrac{3^{n-1}}{5}-2 a_{n-1}=-2\left(a_{n-1}-\dfrac{3^{n-1}}{5}\right)\)
\({\color{Red}{(定義法證明等比數列,要注意首項a_{1}-\dfrac{3}{5}是否等於0)}}\)
① 當\(a_{1}-\dfrac{3}{5} \neq 0\),即\(a_{1} \neq \dfrac{3}{5}\)時,\(\dfrac{a_{n}-\dfrac{3^{n}}{5}}{a_{n-1}-\dfrac{3^{n-1}}{5}}=-2\)
\(\therefore a_{1} \neq \dfrac{3}{5}\)時,\(\left\{a_{n}-\dfrac{3^{n}}{5}\right\}\)為等比數列,公比為\(-2\)
② 當\(a_{1}=\dfrac{3}{5}\),即\(a_{1}=\dfrac{3}{5}\)時,\(a_{n}-\dfrac{3^{n}}{5}=0\),數列\(\left\{a_{n}-\dfrac{3^{n}}{5}\right\}\)不是等比數列.
(2) ① 當\(a_{1}=\dfrac{3}{5}\)時,\(a_{n}=\dfrac{1}{5} \cdot 3^{n}\),為單調遞增數列,滿足條件.
② 當\(a_{1} \neq \dfrac{3}{5}\)時,由(1)可得:\(a_{n}-\dfrac{3^{n}}{5}=\left(a_{1}-\dfrac{3}{5}\right)(-2)^{n-1}\)
\(\left\{S_{n}\right\}\)是遞增數列,
\(S_{n}-S_{n-1}>0(n \geq 2)\),即\(a_n>0(n≥2)\)
\(\therefore a_{n}=\left(a_{1}-\dfrac{3}{5}\right)(-2)^{n-1}+\dfrac{3^{n}}{5}>0\)
\({\color{Red}{(問題變成恆成立問題,可想到分離參數法,遇到(-2)^{n-1}想到分n奇偶數討論)}}\)
\(n\)為偶數,則\(-2^{n-1}\left(a_{1}-\dfrac{3}{5}\right)+\dfrac{3^{n}}{5}>0 \Rightarrow a_{1}<\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^{n}+\dfrac{3}{5}\)
\(\therefore a_{1}<\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^{2}+\dfrac{3}{5}=\dfrac{3}{2}\)
\({\color{Red}{(f(n)=\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^{n}+\dfrac{3}{5}是增數列,f_{\min }=f(2))}}\)
\(n\)為奇數,則\(2^{n-1}\left(a_{1}-\dfrac{3}{5}\right)+\dfrac{3^{n}}{5}>0\)\(\Rightarrow a_{1}>-\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^{n}+\dfrac{3}{5}\)
\(\text { 籹 } a_{1}>-\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^{3}+\dfrac{3}{5}=-\dfrac{3}{4}\)
\({\color{Red}{(f(n)=-\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^{n}+\dfrac{3}{5}是減數列,f_{\max }=f(3))}}\)
\(\therefore-\dfrac{3}{4}<a_{1}<\dfrac{3}{2}\).且\(a_{1} \neq \dfrac{3}{5}\)
綜上可得:\(-\dfrac{3}{4}<a_{1}<\dfrac{3}{2}\)
【點撥】\(a_{n+1}=2 a_{n}\)\(\left(n \in N^{*}\right)\),不能得到\(\{a_n\}\)是等比數列,一定要強調\(a_1≠0\)才行.
 

鞏固練習

1(★)根據下列通項能判斷數列為等比數列的是(  )
A.\(a_n=n\) \(\qquad \qquad \qquad \qquad\) B.\(a_{n}=\sqrt{n}\) \(\qquad \qquad \qquad \qquad\)C.\(a_{n}=2^{-n}\) \(\qquad \qquad \qquad \qquad\)D.\(a_{n}=\log _{2} n\)
 

2(★★)已知數列\(\{a_n\}\)是等比數列,則下列數列中:①\(\left\{a_{n}^{3}\right\}\);②\(\left\{2^{a_{n}}\right\}\);③\(\left\{\dfrac{1}{2 a_{n}}\right\}\),等比數列的個數是(  )
A.\(0\)\(\qquad \qquad \qquad \qquad\)B.\(1\)\(\qquad \qquad \qquad \qquad\)C.\(2\)\(\qquad \qquad \qquad \qquad\)D.\(3\)
 

3(★★)在數列\(\{a_n\}\)中,\(a_1=2\)\(a_{n+1}=4 a_{n}-3 n+1\),\(n∈N^*\),證明:數列\(\left\{a_{n}-n\right\}\)是等比數列.
 
 

4(★★★)\(S_n\)為數列\(\{a_n\}\)的前\(n\)項和,已知\(a_3=7\),\(a_{n}=2 a_{n-1}+a_{2}-2\)\((n \geq 2)\)
(1)證明:\(\left\{a_{n}+1\right\}\)為等比數列;
(2)求\(\{a_n\}\)的通項公式,並判斷\(n\),\(a_n\),\(S_n\)是否成等差數列?
 
 

答案

1.\(C\)
2.\(C\)
3. 提示:定義法證明
4.\((1)\)提示:定義法證明
\((2) a_n=2^n-1\)\(n\),\(a_n\),\(S_n\)成等差數列
 

【題型二】等比數列的基本運算

【典題1】\(S_n\)是等比數列\(\{a_n\}\)的前n項和,\(S_3\),\(S_9\),\(S_6\)成等差數列,且\(a_7=2\),則\(a_4+a_{10}=\) \(\underline{\quad \quad}\).
【解析】由題意可得:等比數列\(\{a_n\}\)的公比\(q≠1\)
\({\color{Red}{(利用等比數列的前n項和公式S_{n}= \begin{cases}n a_{1} & (q=1) \\ \dfrac{a_{1}\left(1-q^{n}\right)}{1-q} & (q \neq 1)\end{cases},特別要注意公比q是否等於1)}}\)
\(∵S_3\),\(S_9\),\(S_6\)成等差數列,\(∴2S_9=S_6+S_3,\)
\(\therefore 2 \times \dfrac{a_{1}\left(q^{9}-1\right)}{q-1}=\dfrac{a_{1}\left(q^{6}-1\right)}{q-1}+\dfrac{a_{1}\left(q^{3}-1\right)}{q-1}\)\(\Rightarrow 2 q^{6}-q^{3}-1=0 \Rightarrow\left(2 q^{3}+1\right)\left(q^{3}-1\right)=0\)
\(\therefore q^{3}=-\dfrac{1}{2}\)
\(\because a_{7}=2 \quad \therefore a_{1} q^{6}=2 \Rightarrow a_{1}=8\)
\(a_4+a_{10}=a_1 q^3+a_1 q^9= -4-1=-5\)
【點撥】
① 與等差數列差不多,首項\(a_1\)和公比\(q\)是等比數列的基本量,通項公式\(a_{n}=a_{1} q^{n-1}\)和前\(n\)項和公式\(S_{n}= \begin{cases}n a_{1} & (q=1) \\ \dfrac{a_{1}\left(1-q^{n}\right)}{1-q} & (q \neq 1)\end{cases}\)均與基本量有關;
②等比數列中\(a_1\),\(q\),\(a_n\),\(S_n\),\(n\)五個量,一般可以“知二求三”,通過條件得到\(a_1\)\(q\)的方程(組)是關鍵.
 

【典題2】【多選題】正項等比數列\(\{a_n\}\)的前\(n\)項和是\(S_n\),已知\(S_3=a_2+10a_1\),\(a_4=3\).下列說法正確的是(  )
A.\(a_1=9\)
B.\(\{a_n\}\)是遞增數列
C.\(\left\{S_{n}+\dfrac{1}{18}\right\}\)為等比數列
D.\(\left\{\log _{3} a_{n}\right\}\)是等比數列
【解析】\(∵S_3=a_2+10a_1\),\(a_4=3\)
設首項為\(a_1\),公比為\(q\)
\(\left\{\begin{array}{c} a_{1}+a_{2}+a_{3}=a_{2}+10 a_{1} \\ a_{1} q^{3}=3 \end{array}\right.\)
解得\(\left\{\begin{array}{l} a_{1}=\dfrac{1}{9} \\ q=3 \end{array}\right.\)
\({\color{Red}{(這里S_3=a_1+a_2+a_3,沒用等比數列前n項和公式,運算簡單些)}}\)
所以\(a_{n}=\dfrac{1}{9} \cdot 3^{n-1}=3^{n-3}\),故\(A\)錯誤,\(B\)正確;
\(S_{n}=\dfrac{\dfrac{1}{9}\left(3^{n}-1\right)}{3-1}=\dfrac{1}{18} \cdot 3^{n}-\dfrac{1}{18}\)
由於\(S_n\)的關系式符合\(kq^n-k\)的形式,故\(C\)正確.
由於\(a_{n}=3^{n-3}\)
所以\(\log _{3} a_{n}=\log _{3} 3^{n-3}=n-3\)
所以該數列為等差數列,故\(D\)錯誤.
故選:\(BC\)
【點撥】
① 在等比數列中遇到\(S_n\)若其下標較小,用\(S_n=a_1+a_2+⋯+a_n\)會比等比數列的前\(n\)項和公式更好些;
② 本題還是把已知條件向基本量“靠攏”.
 

【典題3】數列\(\{a_n\}\)\(\{b_n\}\)均為等比數列,其前\(n\)項和分別為\(S_n\)\(T_n\),若對任意的\(n∈N^*\),都有\(\dfrac{S_{n}}{T_{n}}=\dfrac{3^{n}+1}{4}\),則\(\dfrac{a_{4}}{b_{4}}=\) \(\underline{\quad \quad}\).
【解析】\(n=1\)時,\(\dfrac{S_{1}}{T_{1}}=\dfrac{3+1}{4}=1\)
\(a_1=b_1\)
\(\{a_n\}\)\(\{b_n\}\)的公比分別為\(q\),\(p\)
\(\dfrac{S_{2}}{T_{2}}=\dfrac{a_{1}+a_{1} q}{b_{1}+b_{1} p}=\dfrac{1+q}{1+p}=\dfrac{9+1}{4}=\dfrac{5}{2}\)
\(2(1+q)=5(1+p)\),即\(q=\dfrac{3}{2}+\dfrac{5 p}{2}\)
\(n=3\)時,\(\dfrac{S_{3}}{T_{3}}=\dfrac{a_{1}+a_{1} q+a_{1} q^{2}}{b_{1}+b_{1} p+b_{1} p^{2}}=\dfrac{1+q+q^{2}}{1+p+p^{2}}=\dfrac{27+1}{4}=7\)
\(1+q+q^2=7(1+p+p^2)\)
\(q=\dfrac{3}{2}+\dfrac{5 p}{2}\)代入得\(1+\dfrac{3}{2}+\dfrac{5 p}{2}+\left(\dfrac{3}{2}+\dfrac{5 p}{2}\right)^{2}=7\left(1+p+p^{2}\right)\)
整理得\(p^2-4p+3=0\),得\(p=1\)\(3\)
\(p=1\)時,\(q=\dfrac{3}{2}+\dfrac{5 p}{2}=4\)
此時\(\dfrac{S_{n}}{T_{n}}=\dfrac{\dfrac{a_{1}\left(1-4^{n}\right)}{1-4}}{n b_{1}}=\dfrac{4^{n}-1}{3 n} \neq \dfrac{3^{n}+1}{4}\)
\(∴p=1\)不成立,
\(p=3\)時,\(q=9\),此時\(\dfrac{a_{4}}{b_{4}}=\dfrac{a_{1} q^{3}}{b_{1} p^{3}}=\dfrac{9^{3}}{3^{3}}=27\)
綜上\(\dfrac{a_{4}}{b_{4}}=27\).
【點撥】利用方程思想向基本量靠攏進行求解,計算量略大.
 

鞏固練習

1(★★)已知數列\(\{a_n\}\)中,\(a_1=7\)\(a_3=1\),若\(\left\{\dfrac{1}{a_{n}+1}\right\}\)是等比數列,則\(a_{11}\)等於\(\underline{\quad \quad}\).
 

2(★★)已知數列\(\{a_n\}\)是各項均為正數的等比數列,其前\(n\)項和為\(S_n\)\(a_1+a_2=2\)\(a_5+a_6=8\),則\(S_{10}=\) \(\underline{\quad \quad}\).
 

3(★★)已知等比數列\(\{a_n\}\)的前\(n\)項和是\(S_n\),若\(a_1+2a_2=0\)\(S_{3}=\dfrac{3}{4}\),且\(a≤S_n≤a+2\),則實數\(a\)的取值范圍是\(\underline{\quad \quad}\).
 

4(★★)若等比數列\(\{a_n\}\)的前\(n\)項和是\(S_n\),且\(S_2=3\)\(S_6=63\),則\(S_5=\) \(\underline{\quad \quad}\).
 

5(★★)\(\{a_n\}\)是各項均為正數的等比數列,\(S_n\)為其前\(n\)項和.已知\(a_1 a_3=16\)\(S_3=14\),若存在\(n_0\)使得\(a_1\),\(a_2\),⋯ ,\(a_{n_0}\)的乘積最大,則\(n_0\)的一個可能值是(  )
A.\(4\) \(\qquad \qquad \qquad \qquad\)B.\(5\) \(\qquad \qquad \qquad \qquad\)C.\(6\) \(\qquad \qquad \qquad \qquad\)D.\(7\)
 

6(★★★)【多選題】在公比\(q\)為整數的等比數列\(\{a_n\}\)中,\(S_n\)是數列\(\{a_n\}\)的前\(n\)項和,若\(a_1 a_4=32\)\(a_2+a_3=12\),則下列說法正確的是(  )
A.\(q=2\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) B.數列\(\left\{S_{n}+2\right\}\)是等比數列
C.\(S_8=510\) \(\qquad \qquad \qquad\qquad \qquad \qquad\) D.數列\(\left\{\lg a_{n}\right\}\)是公差為\(2\)的等差數列
 

7(★★★)【多選題】已知等比數列\(\{a_n\}\)公比為\(q\),前\(n\)項和是\(S_n\),且滿足\(a_6=8a_3\),則下列說法正確的是(  )
A.\(q=2\) \(\qquad \qquad \qquad \qquad\)B.\(\dfrac{S_{6}}{S_{3}}=9\)\(\qquad \qquad \qquad \qquad\) C.\(S_3\),\(S_6\),\(S_9\)成等比數列 \(\qquad \qquad \qquad \qquad\)D.\(S_n=2a_n+a_1\)
 
 

參考答案

1.\(-\dfrac{127}{128}\)
2.\(62\)
3.\(\left[-1, \dfrac{1}{2}\right]\)
4.\(-33\)\(31\)
5.\(A\)
6.\(ABC\)
7.\(AB\)
 

【題型三】等比數列的基本性質及運用

【典題1】已知等比數列\(\{a_n\}\)的公比大於\(1\)\(a_3 a_7=72\)\(a_2+a_8=27\),則\(a_{12}=\) \(\underline{\quad \quad}\).
【解析】在公比大於\(1\)的等比數列\(\{a_n\}\)中,
\(∵a_3 a_7=72⇒a_2 a_8=27\)\(a_2+a_8=27\)
\(a_2\),\(a_8\)\(x^2-27x+72=0\)的兩根,
\({\color{Red}{(利用韋達定理,求解更快捷)}}\)
可解得\(\left\{\begin{array}{c} a_{2}=3 \\ a_{8}=24 \end{array}\right.\)\(\left\{\begin{array}{c} a_{8}=3 \\ a_{2}=24 \end{array}\right.\)
由於公比大於\(1\),則\(a_2=3\)\(a_8=24\)
則有\(q^{6}=\dfrac{a_{8}}{a_{2}}=8\),則\(q^2=2\)
\({\color{Red}{(q^{n-m}=\dfrac{a_{n}}{a_{m}},知道兩項便可直接求出公比q)}}\)
\(a_{12}=a_2 q^{10}=3×2^5=96\)
\({\color{Red}{(a_{n}=a_{m} q^{n-m},求任意一項a_k不一定要知道a_1)}}\)
【點撥】本題若使用方程思想求基本量的方法,計算量就較大;注意項數的下標之間數值的關系,利用等比數列的相關性質求解快捷.
 

【典題2】【多選題】已知等比數列\(\{a_n\}\)的各項均為正數,公比為\(q\),且\(a_1>1\)\(a_6+a_7>a_5 a_8+1>2\),記\(\{a_n\}\)的前\(n\)項積為\(T_n\),則下列選項中正確的選項是 (  )
A.\(0<q<1\) \(\qquad \qquad \qquad \qquad\)B.\(a_6>1\) \(\qquad \qquad \qquad \qquad\)C.\(T_{12}>1\) \(\qquad \qquad \qquad \qquad\) D.\(T_{13}>1\)
【解析】\(∵a_6+a_7>a_5 a_8+1\)
\(∴a_6+a_7>a_6 a_7+1\)\(⇒a_6 a_7-a_6-a_7+1<0\)
\(∴(a_6-1)(a_7-1)<0 (*)\)
\(∵a_1>1\)
\(a_6<1⇒a_1 q^5<1⇒0<q<1\)
則一定有\(a_7=a_6 q<1\),不符合 (*),
\({\color{Red}{(大膽假設小心驗證)}}\)
\(a_6>1 ,a_7<1\),
\(∴0<q<1\)
\(∵a_6 a_7+1>2\),
\(∴a_6 a_7>1\)
\(∴T_{12}=a_1 a_2 a_3…a_{12}=(a_6 a_7 )^6>1\)\(T_{13}=a_{1} a_{2} a_{3} \ldots a_{12} a_{13}=a_{7}^{13}<1\)
故選:\(ABC\)
【點撥】注意到題中\(a_6\)\(a_7\)\(a_5\)\(a_8\)下標存在\(6+7=5+8\),而\(T_{12} 、 T_{13}\)\(a_6\)\(a_7\)有關,故利用等比數列的性質:若\(m+n=p+t\), 則\(a_m a_n=a_p a_t\).
 

【典題3】已知正項等比數列\(\{a_n\}\)的前\(n\)項和為\(S_n\)\(S_8-2S_4=6\),則\(a_9+a_{10}+a_{11}+a_{12}\)的最小值為\(\underline{\quad \quad}\)
【解析】由於\(a_n>0\),則公比\(q\)不可能等於\(-1\)
由等比數列的性質可得:\(S_4\),\(S_8-S_4\),\(S_{12}-S_8\)成等比數列,
\(S_{4}\left(S_{12}-S_{8}\right)=\left(S_{8}-S_{4}\right)^{2}\)\(\Rightarrow S_{12}-S_{8}=\dfrac{\left(S_{8}-S_{4}\right)^{2}}{S_{4}}\)\(=\dfrac{\left(S_{4}+6\right)^{2}}{S_{4}}=S_{4}+\dfrac{36}{S_{4}}+12\)
\(\therefore a_{9}+a_{10}+a_{11}+a_{12}\)\(=S_{12}-S_{8}=S_{4}+\dfrac{36}{S_{4}}+12 \geq 24\)
當且僅當\(S_4=6\)時等號成立.
\(a_9+a_{10}+a_{11}+a_{12}\)的最小值為\(24\)
【點撥】\(q≠-1\),則\(S_{n}\),\(S_{2 n}-S_{n}\),\(S_{3 n}-S_{2 n}\),…成等比數列.
 

鞏固練習

1(★★)若等比數列\(\{a_n\}\)的各項均為正數,且\(a_1 a_{10}=9\),則\(\log _{9} a_{1}+\log _{9} a_{2}+\cdots+\log _{9} a_{10}=\) \(\underline{\quad \quad}\).
 

2(★★)正項等比數列\(\{a_n\}\)滿足\(a_2^2+2a_3a_7\)\(+a_6 a_{10}=16\),則\(a_2+a_8=\) \(\underline{\quad \quad}\).
 

3(★★)在等比數列\(\{a_n\}\)中,若\(a_{2} a_{5}=-\dfrac{3}{4}\)\(a_{2}+a_{3}+a_{4}+a_{5}=\dfrac{9}{4}\),則\(\dfrac{1}{a_{2}}+\dfrac{1}{a_{3}}+\dfrac{1}{a_{4}}+\dfrac{1}{a_{5}}=\) \(\underline{\quad \quad}\).
 

4(★★)已知等比數列\(\{a_n\}\)中,\(a_2 a_3 a_4=1\)\(a_6 a_7 a_8=64\),則\(a_4 a_5 a_6=\) \(\underline{\quad \quad}\).
 

5(★★)等比數列\(\{a_n\}\)中,\(a_1+a_2+a_3=3\)\(a_4+a_5+a_6=6\),則\(\{a_n\}\)的前\(12\)項和為\(\underline{\quad \quad}\).
 

6(★★)若等比數列\(\{a_n\}\)的前\(n\)項和為\(S_n\),且\(\dfrac{S_{6}}{S_{3}}=6\),則\(\dfrac{S_{9}}{S_{6}}=\) \(\underline{\quad \quad}\).
 

7(★★)已知等比數列\(\{a_n\}\)的前\(n\)項和為\(S_n\),若\(a_1+a_3=5\)\(S_4=20\),則\(\dfrac{S_{8}-2 S_{4}}{S_{6}-S_{4}-S_{2}}=\) \(\underline{\quad \quad}\).
 

8(★★)已知正項等比數列\(\{a_n\}\)滿足\(a_2 a_8=16a_5\),\(a_3+a_5=20\),若存在兩項\(a_m\),\(a_n\)使得\(\sqrt{a_{m} a_{n}}=32\),則\(\dfrac{1}{m}+\dfrac{4}{n}\)的最小值為\(\underline{\quad \quad}\).
 

9(★★)【多選題】設等比數列\(\{a_n\}\)的公比為\(q\),其前\(n\)項和是\(S_n\),前\(n\)項積為\(T_n\),並且滿足條件\(a_1>1\)\(a_7 a_8>1\)\(\dfrac{a_{7}-1}{a_{8}-1}<0\),則下列結論正確的是(  )
A.\(0<q<1\) \(\qquad \qquad \qquad\)B.\(a_7 a_9>1\) \(\qquad \qquad \qquad\)C.\(S_n\)的最大值為\(S_9\) \(\qquad \qquad \qquad\)D.\(T_n\)的最大值為\(T_7\)
 

10(★★)【多選題】等比數列\(\{a_n\}\)的公比為\(q\),且滿足\(a_1>1\),\(a_{1010}a_{1011}>1\),\(\left(a_{1010}-1\right)\left(a_{1011}-1\right)<0\),記\(T_n=a_1 a_2 a_3…a_n\),則下列結論正確的是(  )
A.\(0<q<1\) \(\qquad\) B.\(a_{1010} a_{1012}-1>0\) \(\qquad\)C.\(T_{n} \leq T_{1011}\) \(\qquad\) D.使\(T_n<1\)成立的最小自然數\(n\)等於\(2021\)
 
 

參考答案

1.\(5\)
2.\(4\)
3.\(-3\)
4.\(8\)
5.\(45\)
6.\(\dfrac{31}{6}\)
7.\(10\)
8.\(\dfrac{3}{4}\)
9.\(AD\)
10.\(AD\)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM