二階行列式
所謂二階行列式,是由四個數,如 \(a_{11}\),\(a_{12}\),\(a_{21}\),\(a_{22}\) 排列成含有兩行兩列形如 \(\left|\begin{array}{c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right|\) 的式子,它表示一個數值,其展開式為
\[\left|\begin{array}{c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right| =a_{11}a_{22}-a_{12}a_{21} \]
三階行列式
所謂三階行列式,是由九個數,如 \(a_{11}\),\(a_{12}\),\(a_{13}\),\(a_{21}\),\(a_{22}\),\(a_{23}\),\(a_{31}\),\(a_{32}\),\(a_{33}\) 排列成含有三行三列形如 \(\left|\begin{array}{c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|\) 的式子,它表示
一個數值,其展開式為
\[\left|\begin{array}{c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right| =a_{11}\left|\begin{array}{c} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right|-a_{12} \left|\begin{array}{c} a_{21} & a_{23} \\ a_{31} & a_{33} \end{array}\right|+a_{13} \left|\begin{array}{c} a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right| \]
n階行列式
我們觀察二、三階行列式的定義,順便定義一下一階行列式:
(幾乎全是復制)
所謂一階行列式,是由一個數,如 \(a_{11}\) 排列成含有一行一列形如 \(\left|\begin{array}{c} a_{11} \end{array}\right|\) 的式子,它表示一個數值,其展開式為
\[\left|\begin{array}{c} a_{11} \end{array}\right| =a_{11} \]
有了一階行列式的定義,我們考慮像三階行列式一樣遞歸的定義二階行列式:
\[\left|\begin{array}{c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right| =a_{11}\left|\begin{array}{c} a_{22} \end{array}\right|-a_{12}\left|\begin{array}{c} a_{21} \end{array}\right| \]
至此,\(n\) 階行列式的定義幾乎呼之欲出了:
所謂 \(n\) 階行列式,是由 \(n^2\) 個數,如 \(a_{11}\),\(a_{12}\),\(\cdots\),\(a_{nn}\) 排列成含有 \(n\) 行 \(n\) 列形如 \(\left|\begin{array}{c} a_{11} & \cdots & a_{1n} \\ \cdots & \ddots & \cdots \\ a_{n1} & \cdots & a_{nn} \end{array}\right|\) 的式子,它表示一個數值,其展開式為
\[\left|\begin{array}{c} a_{11} & \cdots & a_{1n} \\ \cdots & \ddots & \cdots \\ a_{n1} & \cdots & a_{nn} \end{array}\right| =\sum_{i=1}^{n}(-1)^{i+1}a_{1i}\left|\begin{array}{c} a_{21} & \cdots & a_{2\ i-1} & a_{2\ i+1} & \cdots & a_{2n} \\ \cdots & \ddots & \ddots & \ddots & \ddots & \cdots \\ \cdots & \ddots & \ddots & \ddots & \ddots & \cdots \\ \cdots & \ddots & \ddots & \ddots & \ddots & \cdots \\ \cdots & \ddots & \ddots & \ddots & \ddots & \cdots \\ a_{n1} & \cdots & a_{n\ i-1} & a_{n\ i+1} & \cdots & a_{nn} \end{array}\right| \]
(其實就是對於第一行的每個元素,用它乘除了它同行同列的剩下來數構成的子行列式。)
上式中令
\[M_{1i}= \left|\begin{array}{c} a_{21} & \cdots & a_{2\ i-1} & a_{2\ i+1} & \cdots & a_{2n} \\ \cdots & \ddots & \ddots & \ddots & \ddots & \cdots \\ \cdots & \ddots & \ddots & \ddots & \ddots & \cdots \\ \cdots & \ddots & \ddots & \ddots & \ddots & \cdots \\ \cdots & \ddots & \ddots & \ddots & \ddots & \cdots \\ a_{n1} & \cdots & a_{n\ i-1} & a_{n\ i+1} & \cdots & a_{nn} \end{array}\right|$$,稱為元素 $a_{1i}$ 的**余子式**。令 \]
A_{1i}=(-1)^{i+1}M_{1i}$$,稱為元素 \(a_{1j}\) 的代數余子式。
行列式在解線性方程的運用:Cramer法則
目標:求解關於 \(x_1\),\(x_2\),\(\cdots\),\(x_n\) 的 \(n\) 元線性方程組
\[\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2\\ \cdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \\ \end{cases} \]
Cramer法則求解:
令
\[D=\left|\begin{array}{c} a_{11} & \cdots & a_{1n} \\ \cdots & \ddots & \cdots \\ a_{n1} & \cdots & a_{nn} \end{array}\right| \]
,稱之為該方程組的系數行列式。
同時,把行列式 \(D\) 的第 \(i\) 列替換為方程組的常數列項(\(b_1\),\(b_2\),\(\cdots\),\(b_n\)),得到新的行列式記為 \(D_i\),即
\[D_1=\left|\begin{array}{c} b_1 & a_{12} & \cdots & a_{1n} \\ b_2 & a_{22} & \cdots & a_{2n} \\ \cdots & \vdots & \ddots & \cdots \\ b_n & a_{n2} & \cdots & a_{nn} \end{array}\right|, D_2=\left|\begin{array}{c} a_{11} & b_1 & \cdots & a_{1n} \\ a_{21} & b_2 & \cdots & a_{2n} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & b_n & \cdots & a_{nn} \end{array}\right|, \cdots, D_n=\left|\begin{array}{c} a_{11} & a_{12} & \cdots & b_1 \\ a_{21} & a_{22} & \cdots & b_2 \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & b_n \end{array}\right| \]
若線性方程組的系數行列式 \(D\not=0\),則該方程組有唯一解:
\[x_i=D/D_i\qquad (i=1,2,\cdots,n) \]
Cramer法則的應用
例題 求解二元線性方程組
\[\begin{cases} 5x_1+x_2 = 4 \\ 2x_1-3x_2 = 5 \end{cases} \]
解 這個線性方程組的系數行列式為
\[D=\left|\begin{array}{c} 5 & 1 \\ 2 & -3 \end{array}\right|=-17 \]
由於 \(D=17\not=0\),該線性方程組有唯一解,
\[D_1=\left|\begin{array}{c} 4 & 1 \\ 5 & -3 \end{array}\right|=-17, D_2=\left|\begin{array}{c} 5 & 4 \\ 2 & 5 \end{array}\right|=17 \]
即
\[\begin{cases} x_1=D/D_1=1 \\ x_2=D/D_2=-1 \end{cases} \]
Cramer法則與齊次性
若線性方程組的常數項全為零,即
\[\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\ \cdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = 0 \\ \end{cases} \]
則稱該線性方程組為齊次線性方程組。反之,如果常數項不全為零,則稱之為非齊次線性方程組。
齊次線性方程組永遠有解,這組解為 \(x_i = 0\qquad (i=1,\cdots,n)\),這組解被稱為零解。
由Cramer法則容易知道,當線性方程的系數行列式不等於 \(0\) 時,方程只有零解。
Cramer法則的局限性
- 應用Cramer法則求解 \(n\) 元線性方程組時,必須有 \(n\) 條方程。
- 應用Cramer法則求解 \(n\) 元線性方程組時,因涉及到行列式的計算問題,即需要計算 \(n+1\) 個 \(n\) 階行列式的值,這樣,隨着 \(n\) 的增大,求解的計算量是相當大的。
行列式的性質
行列式轉置:
對於行列式
\[D=\left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| \]
其轉置為
\[D^T=\left|\begin{array}{c} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \cdots & \vdots & \ddots & \cdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{array}\right| \]
性質1 \(D\) = \(D^T\)
推論 行列式可按任一行(列)展開,即
\[D=\left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| =\sum_{j=1}^na_{ij}A_{ij} \]
(其中 \(A_{ij}\)即為上文所提到的代數余子式。)
性質2 行列式可以按行(列)提取公因子,即
\[D=\left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \vdots & \ddots & \cdots \\ ka_{i1} & ka_{i2} & \cdots & ka_{in} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| =k \left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \vdots & \ddots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| \]
性質3 行列式中某一行(列)元素全為零時,值為零。
性質4 行列式兩行(列)互換值反號,即
\[D=\left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \vdots & \ddots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \vdots & \ddots & \cdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| =-\left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \vdots & \ddots & \cdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \cdots & \vdots & \ddots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| \]
性質5 行列式可以拆行(列)相加,即
\[D=\left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \vdots & \ddots & \cdots \\ a_{i1}+a'_{i1} & a_{i2}+a'_{i2} & \cdots & a_{in}+a'_{in} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| =\left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \vdots & \ddots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| +\left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \vdots & \ddots & \cdots \\ a'_{i1} & a'_{i2} & \cdots & a'_{in} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| \]
性質6 行列式兩行(列)成比例值為零。
推論 行列式兩行(列)相同值為零。
性質7 行列式某行(列)的倍數加到另一行(列)值不變,即
\[D=\left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \vdots & \ddots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \vdots & \ddots & \cdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| =\left|\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \vdots & \ddots & \cdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \cdots & \vdots & \ddots & \cdots \\ a_{i1}+a_{j1} & a_{i2}+a_{j2} & \cdots & a_{in}+a_{jn} \\ \cdots & \vdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| \]