第3章 扭轉
- 計算外力偶矩:\(\{M_e\}_{N\cdot m}=9550\frac{\{P\}_{kW}}{\{n\}_{r/min}}\)
- 扭矩\(T\),用右手螺旋法則表示為矢量,矢量方向與截面外法線方向一致時為正。
薄壁圓筒扭轉
- 切應力\(\tau=\frac{M_e}{2\pi r^2\delta}\),\(r\)為圓筒平均半徑,\(\delta\)為筒壁厚度
- 切應力互等定理:\(\tau=\tau'\)
- 切應變\(\gamma=\frac{r\varphi}{l}\)
- 剪切胡克定律:\(\tau=G\gamma\),\(G\)為切變模量
- \(G=\frac{E}{2(1+\mu)}\)
- 單位體積剪切應變能\(v_\epsilon=\frac12\tau\gamma\)
圓軸扭轉
-
任意點切應力\(\tau_\rho=\frac{T\rho}{I_p}\),\(I_p\)為極慣性矩
- 實心圓軸:\(I_p=\frac{\pi R^4}2=\frac{\pi D^4}{32}\)
- 空心圓軸:\(I_p=\frac{\pi}{32}(D^4-d^4)\)
-
最大切應力\(\tau_{max}=\frac{TR}{I_p}=\frac{T}{W_t}\),\(W_t\)為抗扭截面系數
- 實心圓軸:\(W_t=\frac{\pi R^3}2=\frac{\pi D^3}{16}\)
- 空心圓軸:\(W_t=\frac{\pi}{16D}(D^4-d^4)\)
-
\(T\)不變時,等直桿兩橫截面間相對扭轉角\(\varphi=\frac{Tl}{GI_p}\)
\(GI_p\)稱為圓軸的扭轉剛度
-
扭轉角的變化率\(\varphi'=\frac{d\varphi}{dx}=\frac T{GI_p}\)
- \(T/GI_p\)不變時,\(\varphi'=\frac\varphi l\)
- \(\{\varphi'\}_{(^\circ)/m}=\{\varphi'\}_{rad/m}\)
-
扭轉應變能\(V_\epsilon=\frac12M_e\varphi=\frac{T^2l}{2GI_p}\)