第3章 扭转
- 计算外力偶矩:\(\{M_e\}_{N\cdot m}=9550\frac{\{P\}_{kW}}{\{n\}_{r/min}}\)
- 扭矩\(T\),用右手螺旋法则表示为矢量,矢量方向与截面外法线方向一致时为正。
薄壁圆筒扭转
- 切应力\(\tau=\frac{M_e}{2\pi r^2\delta}\),\(r\)为圆筒平均半径,\(\delta\)为筒壁厚度
- 切应力互等定理:\(\tau=\tau'\)
- 切应变\(\gamma=\frac{r\varphi}{l}\)
- 剪切胡克定律:\(\tau=G\gamma\),\(G\)为切变模量
- \(G=\frac{E}{2(1+\mu)}\)
- 单位体积剪切应变能\(v_\epsilon=\frac12\tau\gamma\)
圆轴扭转
-
任意点切应力\(\tau_\rho=\frac{T\rho}{I_p}\),\(I_p\)为极惯性矩
- 实心圆轴:\(I_p=\frac{\pi R^4}2=\frac{\pi D^4}{32}\)
- 空心圆轴:\(I_p=\frac{\pi}{32}(D^4-d^4)\)
-
最大切应力\(\tau_{max}=\frac{TR}{I_p}=\frac{T}{W_t}\),\(W_t\)为抗扭截面系数
- 实心圆轴:\(W_t=\frac{\pi R^3}2=\frac{\pi D^3}{16}\)
- 空心圆轴:\(W_t=\frac{\pi}{16D}(D^4-d^4)\)
-
\(T\)不变时,等直杆两横截面间相对扭转角\(\varphi=\frac{Tl}{GI_p}\)
\(GI_p\)称为圆轴的扭转刚度
-
扭转角的变化率\(\varphi'=\frac{d\varphi}{dx}=\frac T{GI_p}\)
- \(T/GI_p\)不变时,\(\varphi'=\frac\varphi l\)
- \(\{\varphi'\}_{(^\circ)/m}=\{\varphi'\}_{rad/m}\)
-
扭转应变能\(V_\epsilon=\frac12M_e\varphi=\frac{T^2l}{2GI_p}\)