羅德里格旋轉公式:三維空間中向量\(\boldsymbol{v}\)繞單位向量\(\boldsymbol{u}\)旋轉\(\theta\)角度之后得到的\(\boldsymbol{v^{'}}\)
\[\boldsymbol{v^{'}}=\boldsymbol{v}cos\theta+(\boldsymbol{u}\cdot\boldsymbol{v})\boldsymbol{u}(1-cos\theta)+(\boldsymbol{u}\times\boldsymbol{v})sin\theta \]
首先我們可以將\(\boldsymbol{v^{'}}\)分解為平行\(\boldsymbol{u}\)和垂直\(\boldsymbol{u}\)的兩個向量,\(\boldsymbol{v_{||}}\)可以用叉積較容易求出。
\[\begin{equation} \begin{aligned} \boldsymbol{v_{||}}&=|\boldsymbol{v_{||}}|\boldsymbol{u} \\ &=\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{|\boldsymbol{u}|}\boldsymbol{u} \\ &=(\boldsymbol{u}\cdot\boldsymbol{v})\boldsymbol{u} \end{aligned} \end{equation} \]
我們可以通過構造正交系來求得\(\boldsymbol{v_{\perp}^{'}}\),我們可以知道\(\boldsymbol{u}\times\boldsymbol{v_{\perp}}\)和\(\boldsymbol{v_{\perp}}\)是正交且模長相同且三個向量在一個平面,那么我們可以將\(\boldsymbol{v_{\perp}^{'}}\)表示出來。
\[\begin{equation} \begin{aligned} \boldsymbol{v_{\perp}^{'}}&=\boldsymbol{u}\times\boldsymbol{v_{\perp}}sin\theta+\boldsymbol{v_{\perp}}cos\theta \\ &=\boldsymbol{u}\times(\boldsymbol{v}-\boldsymbol{v_{||}})sin\theta+(\boldsymbol{v}-\boldsymbol{v_{||}})cos\theta \\ &=\boldsymbol{u}\times(\boldsymbol{v}-(\boldsymbol{u}\cdot\boldsymbol{v})\boldsymbol{u})sin\theta+(\boldsymbol{v}-(\boldsymbol{u}\cdot\boldsymbol{v})\boldsymbol{u})cos\theta \\ &=\boldsymbol{u}\times\boldsymbol{v}sin\theta+\boldsymbol{v}cos\theta-(\boldsymbol{u}\cdot\boldsymbol{v})\boldsymbol{u}cos\theta \end{aligned} \end{equation} \]
結合\((1)(2)\)式我們可以得到\(\boldsymbol{v^{'}}\)。
\[\begin{equation} \begin{aligned} \boldsymbol{v^{'}}&=\boldsymbol{v_{||}^{'}}+\boldsymbol{v_{\perp}^{'}} \\ &=\boldsymbol{v_{||}}+\boldsymbol{v_{\perp}^{'}} \\ &=\boldsymbol{v}cos\theta+(\boldsymbol{u}\cdot\boldsymbol{v})\boldsymbol{u}(1-cos\theta)+(\boldsymbol{u}\times\boldsymbol{v})sin\theta \end{aligned} \end{equation} \]