一階線性微分方程標准形式
\[\frac{\mathrm{d} y}{\mathrm{d} x}+P(x) y=Q(x) \]
-
若 \(Q(x)\equiv 0\),稱為齊次方程
-
若 \(Q(x)\not\equiv 0\),稱為非齊次方程
1. 解齊次方程
\[\quad \frac{\mathrm{d} y}{\mathrm{d} x}+P(x) y=0 \]
分離變量
\[\quad \frac{\mathrm{d} y}{y}=-P(x) \mathrm{d} x \]
兩邊積分得
\[\ln |y|=-\int P(x) \mathrm{d} x+\ln \mid C \]
故通解為
\[y=C \mathrm{e}^{-\mathrm{J} P(x) \mathrm{d} x} \]
2. 解非齊次方程
\[\frac{\mathrm{d} y}{\mathrm{d} x}+P(x) y=Q(x) \]
用常數變易法作變換
\[y(x)=u(x) \mathrm{e}^{-\int P(x) \mathrm{d} x} \]
則
\[u^{\prime} \mathrm{e}^{-\int P(x) \mathrm{d} x}-P(x)u\mathrm{e}^{-\int P(x) \mathrm{d} x}+P(x)u\mathrm{e}^{-\int P(x) \mathrm{d} x}=Q(x) \\ 即 \quad \frac{\mathrm{d} u}{\mathrm{d} x}=Q(x) \mathrm{e}^{\int P(x) \mathrm{d} x} \]
兩端積分得
\[u=\int Q(x) \mathrm{e}^{\int P(x) \mathrm{d} x} \mathrm{d} x+C \]
故原方程的通解
\[y=\mathrm{e}^{-\int P(x) \mathrm{d} x}\left[\int Q(x) \mathrm{e}^{\int P(x) \mathrm{d} x} \mathrm{d} x+C\right] \]