黎曼曲面Riemann Surface


黎曼曲面Riemann Surface

 

A Riemann surface is a surface-like configuration that covers the complex plane with several, and in general infinitely many, "sheets." These sheets can have very complicated structures and interconnections (Knopp 1996, pp. 98-99). Riemann surfaces are one way of representing multiple-valued functions; another is branch cuts. The above plot shows Riemann surfaces for solutions of the equation

黎曼曲面是一種類似於曲面的結構,它覆蓋了多個,通常是無限多個的“片”。這些片可以有非常復雜的結構和相互連接(Knopp 1996,pp.98-99)。Riemann曲面是表示多值函數(功能)的一種方法;另一種是分支切割。上圖顯示了方程解的黎曼曲面。

其中d=2, 3, 4, and 5, where w(z)  is the Lambert W-function (M. Trott).
The Riemann surface  S of the function field K is the set of nontrivial
discrete valuations on K. Here, the set  S corresponds to the ideals of the ring  A of K integers of  K over C(z) . ( A consists of the elements
of K that are roots of monic polynomials over C(z) .) Riemann surfaces provide a geometric visualization of functions elements and their analytic
continuations.
函數(功能)域K的Riemann曲面S是K上的一組非平凡離散賦值集,這里的S對應於C(z)上K的整數環A的理想。(A由K的元素組成,這些元素是C[z]上的一元多項式的根)。Riemann曲面提供了函數(功能)元素及其解析連續性的幾何可視化。
Schwarz proved at the end of nineteenth century that the automorphism
group of a compact Riemann surface of genus g>=2 is finite, and Hurwitz (1893) subsequently showed that its order is at most  84(g-1) (Arbarello et
al. 1985, pp. 45-47; Karcher and Weber 1999, p. 9). This bound is attained for infinitely many g, with the smallest  of g such an extremal surface being 3 (corresponding to the Klein quartic). However, it is also known that there are infinitely many genera for which the bound 84(g-1) is not attained (Belolipetsky 1997, Belolipetsky and Jones).
Schwarz在十九世紀末證明了虧格g>=2的緊致黎曼曲面的自同構群是有限的,Hurwitz(1893)隨后證明了它的階至多為84(g-1)(Arbarello等人。1985年,第45-47頁;卡徹和韋伯1999年,第9頁)。對於無窮多的g,這個界是得到的,並且這樣一個極值曲面的最小g是3(對應於Klein四次曲線)。然而,我們也知道,有無限多的屬沒有達到84(g-1)的界限(belloipetsky 1997,belloipetsky和Jones)。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM