傅里葉級數和傅里葉變換對於通訊、電子和數學專業的同學來說應該是很熟悉的,博主計科專業,沒有接觸過這部分內容,只有在高數無窮級數中了解了一些相關內容,這篇博客主要還是圍繞考研數學的知識點來歸納總結一下傅里葉級數的問題。B站一位up主是控制方面的博士,開設了傅里葉級數和變換的專欄,短小精悍,個人覺得前三節和同濟高等數學教程很切合,值得一聽!
同時推薦一篇關於傅里葉分析的一篇通俗易懂的文章,知乎三萬贊,不需要數學基礎就能看懂
https://zhuanlan.zhihu.com/p/19763358
一、三角函數系的正交性
二、收斂性定理
三、周期為2π的傅里葉級數展開
設周期為 的函數
在
上可積或絕對可積,由Euler-Fourier公式可求出Fourier系數:
記:
右端的三角級數稱為 的Fourier級數。
正弦級數和余弦級數
1.若 是奇函數,則顯然
,且:
這時, ,稱形如
的級數為正弦級數。
2.若 是偶函數,則顯然
,且:
這時, ,稱形如
的級數為余弦級數。
四、周期為2L的傅里葉級數展開
若 的周期為
,作變換
,則:
是定義在
上的周期為
的函數。利用前述結果,有:
,帶回變量,有如下Fourier展開:
,其中相應的Fourier系數為: