牛頓法求極值及其Python實現


最初對於牛頓法,我本人是一臉懵的。其基本原理來源於高中知識。在如下圖所示的曲線,我們需要求的是f(x)的極值:

對於懵的原因,是忘記了高中所學的點斜式(Point Slope Form),直接貼一張高中數學講義:

因為我們一路沿着x軸去尋找解,所以迭代求f(x)=0的解得通用式為:

與梯度下降相比,牛頓法也同樣是沿着曲線的斜率去尋找極值,但是不存在需要自定義learning rate的問題,因為alpha是由斜率來決定的。

牛頓法的python實現:

def newtons(f,df,x0,e):
    xn = float(x0)
    e_tmp = e+1
    loop = 1
    while e_tmp>e:
        print '########loop'+str(loop)
        k = df(xn)
        xm = f(xn)
        print 'xn='+str(xn)+',k='+str(k)+',y='+str(xm)
        q = xm/k
        xn = xn-q
        e_tmp = abs(0-f(xn))
        print 'new xn='+str(xn)+',e='+str(e_tmp)+',q='+str(q)
        loop=loop+1
    return xn   

 我們調用一下:

from Test1.newtonMethod import newtons
def f(x):
    return x**2+2*x

def df(x):
    return 2*x+2

x = newtons(f,df,3,0.01)
print 'the point you find is '+str(x)

 運行結果如下:

########loop1
xn=3.0,k=8.0,y=15.0
new xn=1.125,e=3.515625,q=1.875
########loop2
xn=1.125,k=4.25,y=3.515625
new xn=0.297794117647,e=0.684269571799,q=0.827205882353
########loop3
xn=0.297794117647,k=2.59558823529,y=0.684269571799
new xn=0.0341661806366,e=0.0694996891724,q=0.26362793701
########loop4
xn=0.0341661806366,k=2.06833236127,y=0.0694996891724
new xn=0.000564381199631,e=0.0011290809254,q=0.0336017994369
the point you find is 0.000564381199631

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM