擬牛頓法(Python實現)


擬牛頓法(Python實現)

使用擬牛頓法(BFGS和DFP),分別使用Armijo准則和Wolfe准則來求步長

求解方程

\(f(x_1,x_2)=(x_1^2-2)^4+(x_1-2x_2)^2\)的極小值

import numpy as np


# import tensorflow as tf


def gfun(x):  # 梯度
    # x = tf.Variable(x, dtype=tf.float32)
    # with tf.GradientTape() as tape:
    #     tape.watch(x)
    #     z = fun(x)
    # return tape.gradient(z, x).numpy()  # 這里使用TensorFlow來求梯度,直接手算梯度返回也行
    return np.array([4 * (x[0] - 2) ** 3 + 2 * (x[0] - 2 * x[1]), -4 * (x[0] - 2 * x[1])]).reshape(len(x), 1)


def fun(x):  # 函數
    return (x[0] - 2) ** 4 + (x[0] - 2 * x[1]) ** 2


def bfgs_armijo(x0):
    '''秩1的基於armijo搜索的擬牛頓算法'''
    maxk = 5000
    rho = .55
    sigma = .4
    epsilon = 1e-5
    k = 0
    n = len(x0)
    Hk = np.eye(n)
    while k < maxk:
        gk = gfun(x0)
        if np.linalg.norm(gk) < epsilon:
            break
        dk = -Hk @ gk
        m = 0
        mk = 0
        while m < 20:  # 使用Armijo搜索(非精確線搜索)
            if fun(x0 + rho ** m * dk) < fun(x0) + sigma * rho ** m * gk.T @ dk:
                mk = m
                break
            m += 1
        x = x0 + rho ** mk * dk
        sk = x - x0
        yk = gfun(x) - gk
        Hk = Hk + (sk - Hk @ yk) @ (sk - Hk @ yk).T / ((sk - Hk @ yk).T @ yk)
        k += 1
        x0 = x
    return x0, fun(x0), k


def bfgs_wolfe(x0):
    '''基於wolfe搜索的秩1的擬牛頓算法'''
    maxk = 5000
    epsilon = 1e-5
    k = 0
    n = len(x0)
    Hk = np.eye(n)
    while k < maxk:
        gk = gfun(x0)
        if np.linalg.norm(gk) < epsilon:
            break
        dk = -Hk @ gk
        rho = 0.4
        sigma = 0.5
        a = 0
        b = np.inf
        alpha = 1
        while True:  # 使用Wolfe搜索
            if not ((fun(x0) - fun(x0 + alpha * dk)) >= (-rho * alpha * gfun(x0).T @ dk)):
                b = alpha
                alpha = (a + alpha) / 2
                continue
            if not (gfun(x0 + alpha * dk).T @ dk >= sigma * gfun(x0).T @ dk):
                a = alpha
                alpha = np.min([2 * alpha, (alpha + b) / 2])
                continue
            break

        x = x0 + alpha * dk
        sk = x - x0
        yk = gfun(x) - gk
        Hk = Hk + (sk - Hk @ yk) @ (sk - Hk @ yk).T / ((sk - Hk @ yk).T @ yk)
        k += 1
        x0 = x
    return x0, fun(x0), k


def dfp_wolfe(x0):
    '''基於armijo搜索的秩2的擬牛頓法
    當采用精確線搜索時,矩陣序列Hk的正定性條件sk.T@yk>0可以被滿足
    一般來說,armijo准則不能滿足這一條件需要修正一個條件:yk.T@sk>0
    '''
    maxk = 5000
    epsilon = 1e-5
    k = 0
    n = len(x0)
    Hk = np.eye(n)  # 初始化Hk為單位陣
    while k < maxk:
        gk = gfun(x0)
        if np.linalg.norm(gk) < epsilon:  # 迭代結束條件
            break
        dk = -Hk @ gk
        rho = 0.4
        sigma = 0.5
        a = 0
        b = np.inf
        alpha = 1
        while True:
            if not ((fun(x0) - fun(x0 + alpha * dk)) >= (-rho * alpha * gfun(x0).T @ dk)):
                b = alpha
                alpha = (a + alpha) / 2
                continue
            if not (gfun(x0 + alpha * dk).T @ dk >= sigma * gfun(x0).T @ dk):
                a = alpha
                alpha = np.min([2 * alpha, (alpha + b) / 2])
                continue
            break

        x = x0 + alpha * dk
        sk = x - x0
        yk = gfun(x) - gk
        Hk = Hk - (Hk @ yk @ yk.T @ Hk) / (yk.T @ Hk @ yk) + (sk @ sk.T) / (sk.T @ yk)
        k += 1
        x0 = x
    return x0, fun(x0), k


def dfp_armijo(x0):
    '''基於armijo搜索的秩2的擬牛頓法
    當采用精確線搜索時,矩陣序列Hk的正定性條件sk.T@yk>0可以被滿足
    一般來說,armijo准則不能滿足這一條件需要修正一個條件:yk.T@sk>0
    '''
    maxk = 5000
    rho = .55
    sigma = .4
    epsilon = 1e-5
    k = 0
    n = len(x0)
    Hk = np.eye(n)
    while k < maxk:
        gk = gfun(x0)
        if np.linalg.norm(gk) < epsilon:
            break
        dk = -Hk @ gk
        m = 0
        mk = 0
        while m < 20:  # 使用Armijo搜索(非精確線搜索)
            if fun(x0 + rho ** m * dk) < fun(x0) + sigma * rho ** m * gk.T @ dk:
                mk = m
                break
            m += 1
        x = x0 + rho ** mk * dk
        sk = x - x0
        yk = gfun(x) - gk
        if sk.T @ yk > 0:
            Hk = Hk - (Hk @ yk @ yk.T @ Hk) / (yk.T @ Hk @ yk) + (sk @ sk.T) / (sk.T @ yk)
        k += 1
        x0 = x
    return x0, fun(x0), k


if __name__ == '__main__':
    x0 = np.array([[0], [0]])
    x0, val, k = bfgs_armijo(x0)  # BFGS使用armijo准則
    print(f'近似最優點:\n{x0}\n迭代次數:{k}\n目標函數值:{val.item()}')
    x0 = np.array([[0], [0]])
    x0, val, k = bfgs_wolfe(x0)  # BFGS使用wolfe准則
    print(f'近似最優點:\n{x0}\n迭代次數:{k}\n目標函數值:{val.item()}')
    x0 = np.array([[0], [0]])
    x0, val, k = dfp_armijo(x0)  # DFP使用armijo准則
    print(f'近似最優點:\n{x0}\n迭代次數:{k}\n目標函數值:{val.item()}')
    x0 = np.array([[0], [0]])
    x0, val, k = dfp_wolfe(x0)  # DFP使用wolfe准則
    print(f'近似最優點:\n{x0}\n迭代次數:{k}\n目標函數值:{val.item()}')

運行結果


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM