E(X+Y), E(XY), D(X + Y)


\(X, Y\)為兩個隨機變量, \(p_X(x), p_Y(y)\)分別為\(X, Y\)概率密度/質量函數, \(p(x, y)\)為它們的聯合概率密度.

\(E(X + Y) = E(X) + E(Y)\)在任何條件下成立

\[E(X + Y) = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} (x + y) p(x, y) dx dy \\ = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} x p(x, y) dx dy + \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} y p(x, y) dx dy \\ = E(X) + E(Y) \]

不需要\(X, Y\)相互獨立

\(E(XY) = E(X)E(Y)\)\(X, Y\)相互獨立時成立

\[E(XY) = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} xy p(x, y) dx dy \]

\(X, Y\)相互獨立時, \(p(x, y) = p_X(x)p_Y(y)\):

\[E(XY) = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} xy p_X(x)p_Y(y) dx dy = E(X)E(Y) \]

\(D(X + Y) = D(X) + D(Y)\)\(X, Y\)相互獨立時成立

\[D(X + Y) = E([X + Y]^2) - E^2(X + Y) = E(X^2) + E(Y^2) + 2E(XY) - E^2(X) - E^2(Y) - 2E(X)E(Y) \]

\(X, Y\)相互獨立時, \(2E(XY) = 2E(X)E(Y)\):

\[D(X + Y) = E([X + Y]^2) - E^2(X + Y) = E(X^2)- E^2(X) + E(Y^2) - E^2(Y) = D(X) + D(Y) \]


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM