E(X+Y), E(XY), D(X + Y)


\(X, Y\)为两个随机变量, \(p_X(x), p_Y(y)\)分别为\(X, Y\)概率密度/质量函数, \(p(x, y)\)为它们的联合概率密度.

\(E(X + Y) = E(X) + E(Y)\)在任何条件下成立

\[E(X + Y) = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} (x + y) p(x, y) dx dy \\ = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} x p(x, y) dx dy + \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} y p(x, y) dx dy \\ = E(X) + E(Y) \]

不需要\(X, Y\)相互独立

\(E(XY) = E(X)E(Y)\)\(X, Y\)相互独立时成立

\[E(XY) = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} xy p(x, y) dx dy \]

\(X, Y\)相互独立时, \(p(x, y) = p_X(x)p_Y(y)\):

\[E(XY) = \int_{-\infty}^{{+\infty}} \int_{-\infty}^{{+\infty}} xy p_X(x)p_Y(y) dx dy = E(X)E(Y) \]

\(D(X + Y) = D(X) + D(Y)\)\(X, Y\)相互独立时成立

\[D(X + Y) = E([X + Y]^2) - E^2(X + Y) = E(X^2) + E(Y^2) + 2E(XY) - E^2(X) - E^2(Y) - 2E(X)E(Y) \]

\(X, Y\)相互独立时, \(2E(XY) = 2E(X)E(Y)\):

\[D(X + Y) = E([X + Y]^2) - E^2(X + Y) = E(X^2)- E^2(X) + E(Y^2) - E^2(Y) = D(X) + D(Y) \]


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM