又是一個post-process后期效果,god ray 上帝之光,說起上帝之光就是咱們再看太陽時太陽周圍一圈的針狀光芒
先放組效果,本文的場景資源均來自淺墨大神,效果為本文shader效果
加入了前篇HDR和Bloom,效果大增:鏈接
本文的代碼是來自unity聖典中某大神的分享,博主做了小小的改進 鏈接
然后就來做下講解,共有兩個shader,一個負責制造ray,一個負責和原屏幕圖像混合,於原屏幕圖像混合很簡單,就是單純的把兩個圖像的顏色疊加,控制一下ray的權重,
接下來我們着重講解一下,制造ray的shader
是一個fragement shader
共有4個外部變量
_ScreenLightPos屏幕上光線的位置,這個需要在c#腳本中計算並傳出,稍后會講解
_Density密度
_Decay衰減
_Exposure曝光,用來控制亮度,大家都知道,在相機中,曝光時間越長圖像越亮
先看vertex shader
v2f vert(v2in v) { v2f o; o.pos = mul(UNITY_MATRIX_MVP, v.vertex); half2 texCoord = v.texcoord; half2 deltaTexCoord = texCoord - _ScreenLightPos.xy; deltaTexCoord *= 1.0f / 8 * _Density; texCoord -= deltaTexCoord; o.uv0 = texCoord; texCoord -= deltaTexCoord; o.uv1 = texCoord; texCoord -= deltaTexCoord; o.uv2 = texCoord; texCoord -= deltaTexCoord; o.uv3 = texCoord; texCoord -= deltaTexCoord; o.uv4 = texCoord; texCoord -= deltaTexCoord; o.uv5 = texCoord; texCoord -= deltaTexCoord; o.uv6 = texCoord; texCoord -= deltaTexCoord; o.uv7 = texCoord; return o; }
v.texcoord為當前點的坐標
deltaTexCoord為當前點對光源點的反向向量,長度為兩點間距離
密度越大deltaTexCoord越大,不超過8,deltaTexCoord始終是個分數
第一個采樣點為此處本來位置
采樣點漸漸接進光源處
_Density越大采樣點間距越大
從0到7,點的位置從光源處越來越近,離此處點越來越遠
看看我們的v2f結構體,存了多少坐標點
struct v2f { float4 pos : POSITION; float2 uv0 : TEXCOORD0; float2 uv1 : TEXCOORD1; float2 uv2 : TEXCOORD2; float2 uv3 : TEXCOORD3; float2 uv4 : TEXCOORD4; float2 uv5 : TEXCOORD5; float2 uv6 : TEXCOORD6; float2 uv7 : TEXCOORD7; };
傳入值的結構體v2in
struct v2in { float4 vertex : POSITION; float2 texcoord : TEXCOORD0; };
我們就得到了當前點到光源點的一條直線中的八個點的坐標,為fragement shader取色混色用
當然本步驟也可在fragement shader中完成,但效率沒有vertex shader好,因為不用每個像素都取樣,只是每個頂點取樣就好
再看fragement shader
half4 frag(v2f i) : COLOR { half illuminationDecay = 1.0f; half4 color = tex2D(_MainTex, i.uv0)*illuminationDecay; illuminationDecay *= _Decay; color += tex2D(_MainTex, i.uv1)*illuminationDecay; illuminationDecay *= _Decay; color += tex2D(_MainTex, i.uv2)*illuminationDecay; illuminationDecay *= _Decay; color += tex2D(_MainTex, i.uv3)*illuminationDecay; illuminationDecay *= _Decay; color += tex2D(_MainTex, i.uv4)*illuminationDecay; illuminationDecay *= _Decay; color += tex2D(_MainTex, i.uv5)*illuminationDecay; illuminationDecay *= _Decay; color += tex2D(_MainTex, i.uv6)*illuminationDecay; illuminationDecay *= _Decay; color += tex2D(_MainTex, i.uv7)*illuminationDecay; color /= 8; return half4(color.xyz * _Exposure, 1); }
illuminationDecay光照衰減,_Decay是我們外部可控衰減
_Exposure增加亮度
調整比重離此處像素點越遠也就是離光源越近越衰減,可能有人會問,為什么會這樣?因為我們還是要保留大部分為此處點的顏色,如果其他像素權重過大,則會造成此處點顏色不准確,甚至不好的模糊效果。
然后就是混色,基本上的原理就是從光源處打出無數條射線,嗯,可以這么理解。
Ray我們就制造好了,接下來我們需要把光線ray與原屏幕圖像混合,這一步就比較簡單了,只給出源代碼,各位自己意會。
Shader "Custom/god ray 2 blend" { Properties{ _MainTex("Base (RGB)", 2D) = "" {} _GodRayTex ("God (RGB)", 2D) = ""{} _Alpha("_Alpha", Float) = 0.5 } // Shader code pasted into all further CGPROGRAM blocks CGINCLUDE #include "UnityCG.cginc" struct v2in { float4 vertex : POSITION; float2 texcoord : TEXCOORD0; }; struct v2f { float4 pos : POSITION; float2 uv : TEXCOORD0; }; sampler2D _MainTex; sampler2D _GodRayTex; uniform float _Alpha; v2f vert(v2in v) { v2f o; o.pos = mul(UNITY_MATRIX_MVP, v.vertex); o.uv = v.texcoord; return o; } half4 frag(v2f i) : COLOR { half4 color = tex2D(_MainTex, i.uv) + tex2D(_GodRayTex, i.uv)*_Alpha; //half4 color = tex2D(_MainTex, i.uv); return color; } ENDCG Subshader{ Tags{ "Queue" = "Transparent" } Pass{ ZWrite Off BindChannels { Bind "Vertex", vertex Bind "texcoord", texcoord0 Bind "texcoord1", texcoord1 } Fog{ Mode off } CGPROGRAM #pragma fragmentoption ARB_precision_hint_fastest #pragma vertex vert #pragma fragment frag ENDCG } } Fallback off } // shader
然后就是最后一步,也是十分重要的一步就是通過腳本把它弄到屏幕上,
此處的要點就是要求出光源在屏幕中的位置,
Camera類中有這么一個函數可以把世界坐標轉換為屏幕坐標
Camera.WorldToScreenPoint(position)
官網介紹如下
Transforms position from world space into screen space.
把position從世界坐標轉換為屏幕坐標
Screenspace is defined in pixels. The bottom-left of the screen is (0,0); the right-top is (pixelWidth,pixelHeight). The z position is in world units from the camera.
左下角是屏幕坐標系的原點,右上角是屏幕的最大范圍,超出這個范圍的光源我們都不進行god ray渲染了,以此作為判斷,否則就會進行錯誤渲染,屏幕超出光照范圍了仍在閃爍。
我們把光源的transport傳入腳本,然后檢驗光源的position
另 外還有重要一點就是判斷光源在相機前面還是在后面,如果只判斷是否在屏幕內的話,相機轉到光源后面也會被渲染god ray,解決方法在此,WorldToScreenPoint返回的z值為世界空間內光源與相機的距離,為矢量,所以我們就能用z值正負來判斷前后了,為 正則光源在相機前可渲染god ray,為負則光源在相機后不可渲染god ray
if (lightScreenPos.z > 0 && lightScreenPos.x > 0 && lightScreenPos.x < camera.pixelWidth && lightScreenPos.y >0 && lightScreenPos.y < camera.pixelHeight)
其實就這么渲染也可以,但是效果並不好,god ray變成了“god point”,原因剛才分析的,shader的原理是取點到光源的八個點,那渲染的結果也就是出現了好多點,層次很分明,就是因為之混亂和了那8次,解決方式就是多次渲染,點多了,就變成線了
我們要想使效果更好一點就要多次渲染
建立兩個renderTexure tempRtA和tempRtB用來互相傳值
Graphics.Blit(sourceTexture, tempRtA, material);
第一次過濾結果存在tempRtA
傳到下一次渲染做_MainTex
Graphics.Blit(tempRtA, tempRtB, material);
再傳出tempRtB到第三次渲染,再傳出tempRtA。。。
Graphics.Blit(tempRtB, tempRtA, material);
Graphics.Blit(tempRtA, tempRtB, material);
Graphics.Blit(tempRtB, tempRtA, material);
最后做混合,把ray texture傳到blend shader作為GodRayTex。然后得到最終結果
materialBlend.SetTexture("_GodRayTex", tempRtA);
Graphics.Blit(sourceTexture, destTexture, materialBlend, 0);
代碼如下:
using UnityEngine; using System.Collections; [ExecuteInEditMode] public class godRay2 : MonoBehaviour { public Transform lightpos; public Shader curShader; public Shader curShaderblend; private Material curMaterial; private Material curMateriaBlend; public Vector4 ScreenLightPos = new Vector4(0, 0, 0, 0); public float Density = 0.01f; public float Decay = 0.5f; public float Exposure = 0.5f; public float Alpha = 1; public RenderTexture tempRtA = null; public RenderTexture tempRtB = null; private Vector3 lightScreenPos; #region Properties Material material { get { if (curMaterial == null) { curMaterial = new Material(curShader); curMaterial.hideFlags = HideFlags.HideAndDontSave; } return curMaterial; } } Material materialBlend { get { if (curMateriaBlend == null) { curMateriaBlend = new Material(curShaderblend); curMateriaBlend.hideFlags = HideFlags.HideAndDontSave; } return curMateriaBlend; } } #endregion void Start() { if (!SystemInfo.supportsImageEffects) { enabled = false; return; } if (!curShader && !curShader.isSupported) { enabled = false; } } void OnRenderImage(RenderTexture sourceTexture, RenderTexture destTexture) { if (curShader != null) { lightScreenPos = Camera.main.WorldToScreenPoint(lightpos.position); if (lightScreenPos.z > 0 && lightScreenPos.x > 0 && lightScreenPos.x < camera.pixelWidth && lightScreenPos.y > 0 && lightScreenPos.y < camera.pixelHeight) { material.SetVector("ScreenLightPos", new Vector4(lightScreenPos.x / camera.pixelWidth, lightScreenPos.y / camera.pixelHeight, 0, 0)); // material.SetVector("ScreenLightPos", ScreenLightPos); material.SetFloat("Density", Density); material.SetFloat("Decay", Decay); material.SetFloat("Exposure", Exposure); materialBlend.SetFloat("Alpha", Alpha); CreateBuffers(); Graphics.Blit(sourceTexture, tempRtA, material); Graphics.Blit(tempRtA, tempRtB, material); Graphics.Blit(tempRtB, tempRtA, material); Graphics.Blit(tempRtA, tempRtB, material); Graphics.Blit(tempRtB, tempRtA, material); materialBlend.SetTexture("_GodRayTex", tempRtA); Graphics.Blit(sourceTexture, destTexture, materialBlend, 0); // Graphics.Blit(tempRtA, destTexture, material, 0); } else { Graphics.Blit(sourceTexture, destTexture); } } else { Graphics.Blit(sourceTexture, destTexture); } } void CreateBuffers() { if (!tempRtA) { tempRtA = new RenderTexture(Screen.width / 4, Screen.height / 4, 0); tempRtA.hideFlags = HideFlags.DontSave; } if (!tempRtB) { tempRtB = new RenderTexture(Screen.width / 4, Screen.height / 4, 0); tempRtB.hideFlags = HideFlags.DontSave; } } void OnDisable() { if (curMaterial) { DestroyImmediate(curMaterial); } } }
本shader有幾個缺點,在比較暗的場景不要使用,因為光源處不亮,所以效果不好,Ray的質量不高,從例子就可以看出來,Ray很不清晰,此處可以和Unity ImageEffect的Sun shafts作比較
最后放上兩組效果
林中閃耀的光芒
------ by wolf96