进行目标跟踪时,先验知识告诉我们定位轨迹是平滑的,目标当前时刻的状态与上一时刻的状态有关,滤波方法可以将这些先验知识考虑进来得到更准确的定位轨迹。本文简单介绍粒子滤波及其使用,接着卡尔曼滤波写, ...
进行目标跟踪时,先验知识告诉我们定位轨迹是平滑的,目标当前时刻的状态与上一时刻的状态有关,滤波方法可以将这些先验知识考虑进来得到更准确的定位轨迹。本文简单介绍粒子滤波及其使用,接着卡尔曼滤波写, ...
粒子滤波确实是一个挺复杂的东西,从接触粒子滤波到现在半个多月,博主哦勒哇看了N多篇文章,查略了嗨多资料,很多内容都是看了又看,细细斟酌。今日,便在这里验证一下自己的修炼成果,请各位英雄好汉多多指教 ...
1)初始化阶段-提取跟踪目标特征 该阶段要人工指定跟踪目标,程序计算跟踪目标的特征,比如可以采用目标的颜色特征。具体到Rob Hess的代码,开始时需要人工用鼠标拖动出一个跟踪区域,然后程序自动计算 ...
机器人定位问题 General schematic for mobile robot localization 以下面的两幅图a、b为例,对移动机器人定位问题进行说明。假如机器人从一个 ...
给定t时刻以及之前的所有观测z和输入u,我们的目标是求得当前状态量x的概率分布(belief),即 \[bel(x_t)=p(x_t|z_{1:t}, u_{1:t}) \] 在实际使用中 ...
MathWorks从MATLAB 2015a开始推出与ROS集成的Robotics System Toolbox (机器人系统工具箱),它为自主移动机器人的研发提供现成的算法和硬件接口。 ...
上一篇博文已经讲了贝叶斯滤波的原理以及公式的推导:http://www.cnblogs.com/JunhaoWu/p/bayes_filter.html 本篇文章将从贝叶斯滤波引入到粒子滤波 ...
最近稍闲,稍微整理了一下以前的部分代码,虽然写得不够好,但是对于新手也许也有一定的分享价值。具体算法细节我就暂时不讲了,网上太多了。 所以分享这个我用JAVA写的一个模拟器。模拟定位和惯导(或者pd ...