原文:中值定理關於θ的問題

公式 表達式具體 表達式抽象 該類題目,往往是Taylor公式的推廣,注意題目條件連續可導 題目一 題目二 ...

2020-07-19 17:18 0 1048 推薦指數:

查看詳情

中值定理--函數的中值定理

費馬引理 設f(x)滿足在x0點處 可導且取極值,則 f'(x0)=0 點x0取極值則x0的導數必為0 費馬引理的證明    證明區間內一點導數為零,考慮羅爾定理和費馬引理    導數不為0,導函數必然保號(恆正或恆負,因為零點定理) 羅爾定理 ...

Sat Jan 04 21:09:00 CST 2020 0 985
輔助多項式解決一些中值定理問題

開門見山吧,所謂輔助多項式即是當預證結論為“fn(ξ)=k”,且題干條件較多時,我們可以構造一個n項多項式P(x),使得P(x)滿足題干中f(x)應該滿足的條件,然后令F(x)=f(x)-P(x),再對F(x)使用多次羅爾定理即可!(注:n的取法) 1、例題 見到題目給出三個點我們很容易 ...

Tue Jun 30 02:40:00 CST 2020 0 1029
拉格朗日中值定理

定理表述 如果函數f(x)滿足: (1)在 閉區間[a,b]上 連續; (2)在 開區間(a,b)內 可導; 那么在開區間(a,b)內至少有一點 使等式 成立。 其他形式 記 ...

Fri May 31 18:17:00 CST 2019 0 9056
積分中值定理

若函數 $f(x)$ 在閉區間 $[a,b]$ 上連續,則至少存在一點 $\xi \in [a,b]$,使下式成立 $$\int_{a}^{b}f(x)dx = f(\xi)(b-a)$$ 證明: 由最值定理可知,$f(x)$ 在區間 $[a,b]$ 上存在最大值和最小值,分別設為 $M ...

Thu Jul 23 16:32:00 CST 2020 0 2520
微分和積分的中值定理

微分中值定理:   羅爾定理([a,b]連續,(a,b)可導,f(a)=f(b) ,則f(x)在(a,b)中有一點的導數為0)   拉格朗日中值定理([a,b]連續,(a,b)可導,則f(x)在(a,b)中有一點的導數等於點A(a,f(a))和點B(b,f(b))的連線的斜率)   柯西中值 ...

Tue Dec 29 01:34:00 CST 2020 0 1124
羅爾定理、微分中值定理、廣義微分中值定理

如果一個處處可導的函數的圖像和一條水平直線交於不同的兩點(如圖所示), 那么在這兩點間的函數圖像上至少存在一點處的切線平行於該水平直線(顯然也平行於x軸),這種現象可以更嚴謹地表述為羅爾定理(Rolle’s Theorem[1]):如果函數f(x)在[a,b]上連續,(a,b) 上可導,並且f ...

Sat Dec 22 03:59:00 CST 2018 0 3500
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM