長期有效! LATEX 精美排版,郭懋正《實變函數與泛函分析》實變函數部分習題答案,200元一份,泛函分析部分200元一份,付款碼見本文最后, 付款后聯系郵箱: zhangwenbiao@cqupt.edu.cn 。 第一章樣章: ...
長期有效! LATEX 精美排版,郭懋正《實變函數與泛函分析》實變函數部分習題答案,200元一份,泛函分析部分200元一份,付款碼見本文最后, 付款后聯系郵箱: zhangwenbiao@cqupt.edu.cn 。 第一章樣章: ...
基本概念 泛函 泛函是一個函數的表達式,取值取決於該表達式中的函數,泛函是函數的函數。 1)除了變量x外,泛函還可以包含其他的獨立變量; 2)除函數y(x)外,泛函還可以包含有許多以上述獨立變量為函數的其他函數(因變量); 3)泛函中,除了一階導數外,還可以包含有高階導數 ...
Notes (2011) Mr. Andrew Pinchuck 這是一份講義107頁,很好地體現了泛函分析基 ...
1.Baire定理 定理 (Baire綱定理) 完備的距離空間是第二類型集。 解釋:完備的距離空間$(X,d)$,$\forall x \in X$ 都是內點,因為$X$在$X$中是開集。一個無處 ...
以下所有題目來自科學出版社 許天周的《應用泛函分析》。 1. 設$1 \le p \le q \le +\infty$,證明$l^p \subset l^q$。 證明:$\forall x=(x_1,x_2,\ldots) \in l^p$,$\forall \varepsilon ...
度量空間 線性空間實例:向量空間$K^n$、p方可和數列空間$l^p$、p冪可積函數空間$L^p(E)$、連續函數空間$C[a,b]$、k階連續導數函數空間$C^k[a,b]$、矩陣空間$M_{mn}$ 度量空間=定義了距離的集合。 Holder不等式$\Rightarrow$柯西 ...
證明2 2-1 單點的外測度為\(0\),矩體的外測度為它的體積。 單點集的外測度為\(0\)是因為,可作一開矩體,使得\(x_0\in I\)且\(|I|\)任意小。 設\(I\) ...
證明1 1-1 若\(E\)是開集,則\(E^c\)是閉集。 設\(\{x_k\}\in E^c\)使得\(x_k\to y\)。若\(y\in E\),則因\(E\)是開集,存在某\ ...