原文:從PCA、PLS-DA、OPLS-DA學習線性代數和矩陣

正交: 正交是線性代數的概念,是垂直這一直觀概念的推廣。作為一個形容詞,只有在一個確定的內積空間中才有意義。若內積空間中兩向量的內積為 ,則稱它們是正交的。如果能夠定義向量間的夾角,則正交可以直觀的理解為垂直。物理中:運動的獨立性,也可以用正交來解釋。 對於一般的 希爾伯特空間, 也有內積的概念, 所以人們也可以按照上面的方式定義正交的概念。 特別的, 我們有n維歐氏空間中的正交概念, 這是最直接 ...

2020-03-18 10:53 0 767 推薦指數:

查看詳情

線性代數和概率論——機器學習基礎

目錄 一、線性代數 常見概念 標量(scalar) 向量(vector) 矩陣(matrix) 張量(tensor) 范數(norm) 內積(inner product ...

Tue Mar 24 19:45:00 CST 2020 0 1083
線性代數矩陣

一:含義 將一些元素排列成若干行,每行放上相同數量的元素,就是一個矩陣。這里說的元素可以是數字,例如以下的矩陣: 二:特點 矩陣的一個重要用途是解線性方程組。線性方程組中未知量的系數可以排成一個矩陣,加上常數項,則稱為增廣矩陣。另一個重要用途是表示線性變換,即是諸如之類的線性函數 ...

Sat May 23 09:33:00 CST 2020 0 1070
線性代數矩陣代數

[作者:byeyear,首發於cnblogs.com,轉載請注明。聯系:east3@163.com] 回憶學校的美好時光,順便復習一下學校學過的知識吧。 1. 設A,B為可以相乘的矩陣,AB的每一列都是A的各列的線性組合,以B的對應列的元素為權。 同樣,AB的每一行都是B的各行 ...

Sat Aug 17 06:04:00 CST 2013 0 2709
線性代數-正定矩陣

1 定義 一個n階實對稱矩陣MM符合正定矩陣的條件是當且僅當非零實系數向量zz,都有zTMzzTMz>0 2 性質 2.1 充要條件 矩陣MM的特征值全是正數 A的各階順序主子式都是是正的 MM合同於單位矩陣 2.2 基本性質 正定矩陣的任一主子矩陣也是 ...

Tue Jul 31 00:46:00 CST 2018 0 763
線性代數之——復數矩陣

為了完整地展示線性代數,我們必須包含復數。即使矩陣是實的,特征值和特征向量也經常會是復數。 1. 虛數回顧 虛數由實部和虛部組成,虛數相加時實部和實部相加,虛部和虛部相加,虛數相乘時則利用 \(i^2=-1\)。 在虛平面,虛數 \(3+2i\) 是位於坐標 \((3, 2)\) 的一個 ...

Fri Nov 29 22:03:00 CST 2019 0 1929
線性代數-矩陣的概念

矩陣在計算機中有大量的應用,尤其在WebGL中涉及到大量的矩陣運算。從頭開始學習一遍線性代數,使用的教材是《線性代數》第三版。 矩陣的定義 由m x n個元素,排成m行n列的數表。叫做m行n列矩陣,簡稱:m x n 矩陣。 其中:矩陣里的數字叫做矩陣A 的元素;元素都是實數的叫做 ...

Fri Aug 27 00:00:00 CST 2021 0 1432
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM