從PCA、PLS-DA、OPLS-DA學習線性代數和矩陣


正交:

  正交是線性代數的概念,是垂直這一直觀概念的推廣。作為一個形容詞,只有在一個確定的內積空間中才有意義。若內積空間中兩向量內積為0,則稱它們是正交的。如果能夠定義向量間的夾角,則正交可以直觀的理解為垂直。物理中:運動的獨立性,也可以用正交來解釋。

對於一般的 希爾伯特空間, 也有內積的概念, 所以人們也可以按照上面的方式定義正交的概念。 特別的, 我們有n維歐氏空間中的正交概念, 這是最直接的推廣。
和正交有關的數學概念非常多, 比如 正交矩陣正交補空間、施密特正交化法、 最小二乘法等等。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM