原文:歐拉定理概述

歐拉定理 前言 歐拉定理挺好玩的。但是一般就用來優化模算術下的乘方運算,沒啥意思。不過它的性質比較有意思,在很多模算術帶乘方的玩意里有奇效。更何況歐拉函數其本身就比較神奇。 前置技能:容斥,數論基礎,同余基礎。 歐拉函數 歐拉函數 varphi n 表示 sim n 中與 n 互質的數的個數。 給出數學定義如下 varphi n sum i n gcd i,n 其中 x 表示艾弗森約定。 歐拉函數 ...

2019-10-25 18:26 0 565 推薦指數:

查看詳情

數論之定理

本文介紹[初等]數論、群的基本概念,並引入幾條重要定理,最后籍着這些知識簡單明了地論證了函數和定理。 數論是純粹數學的分支之一,主要研究整數的性質。 算術基本定理(用反證法易得):又稱唯一分解定理,表述為 任何大於1的自然數,都可以唯一分解成有限個質數的乘積,公式:\(n=p_1 ...

Mon Oct 21 18:55:00 CST 2019 0 364
定理及其證明

定理及其證明[補檔] 一.定理 背景:首先你要知道什么是定理以及函數。 下面給出定理,對於互質的a,p來說,有如下一條定理 \[a^{\phi(p)}\equiv1(mod\;p) \] 這就是定理 二.剩余系 定義:對於集合\(\{k*m+a|k ...

Sun Jan 19 01:38:00 CST 2020 1 1067
擴展定理

擴展定理 \[a^b\equiv \begin{cases} &a^{b\%\varphi(p)} &\gcd(a,p)=1\\ &a^b &\gcd(a,p)\neq1,b<\phi(p)\\ &a^{b\%\varphi(p ...

Tue Mar 06 03:59:00 CST 2018 0 1184
定理及其證明

我真的很遜,所以有錯也說不定。 這篇很簡,所以看不懂也說不定。 總覺得小滿哥講過這個證明,雖然身為老年健忘選手我大概是不記得什么了。。 定理:\(a^{\varphi(n)} \equiv 1 \ (mod \ n)\) ,其中 \((a,n) = 1\) 費馬小定理:\(a^{p-1 ...

Wed Jul 17 16:53:00 CST 2019 0 746
定理

定義 如果正整數 \(n\) 和 整數 \(a\) 互質,那么就有 \[a^{\varphi \left( n \right)}\equiv 1\ \left( mod\ n \right) \] 其中歐函數\(\varphi \left( n \right ...

Wed May 27 05:42:00 CST 2020 0 561
函數與定理

函數 \(\varphi(n) \ or \ \phi(n)\) 表示小於n的正整數與n互質的數的個數. 性質: 當n為質數時 \(\varphi(n)=n-1\) 當n為奇數時 \(\varphi(2n) = \varphi(n)\) 證明: \(\because\)函數為積性函數 ...

Sat Jul 04 16:24:00 CST 2020 2 81
定理+篩選法

關系。 函數 函數φ(n)是小於或等於n的正整數中與n互質的數的數目,稱為函數 ...

Wed Dec 05 04:04:00 CST 2018 0 854
函數|(擴展)定理|反演

也許更好的閱讀體驗 函數 定義 函數是 小於等於 x的數中與x 互質 的數的 數目 符號\(\varphi(x)\) 互質 兩個互質的數的最大公因數等於1,1與任何數互質 通式 \(\varphi(x)=x\prod_{i=1}^n(1-\frac{1}{p_i ...

Sat Jun 29 23:52:00 CST 2019 7 1446
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM