原文:數學 - 線性代數導論 - #11 基於矩陣A生成的空間:列空間、行空間、零空間、左零空間

線性代數導論 基於矩陣A生成的空間:列空間 行空間 零空間 左零空間 本節課介紹和進一步總結了如何求出基於一個m n矩陣A生成的四種常見空間的維數和基: 列空間C A ,dim C A r,基 U中主元列對應的原列向量 行空間C AT , dimC AT r,基 U中的主元行 : .為什么行空間不表示為R A 而表示為C AT 因為轉置是矩陣的行與列之間的橋梁。 既然我們已經研究過列空間,通過轉置 ...

2018-02-11 17:04 0 1265 推薦指數:

查看詳情

線性代數空間零空間

空間 空間 C(A):矩陣列向量的線性組合 Ax = b有解當且僅當b在矩陣A的空間零空間 Ax = 0 的解的集合 { x | Ax = 0 } 為矩陣A的零空間,記作N(A) 容易證明零空間是向量空間 Ax = b (b != 0) 的解集合不構成向量空間 ...

Sat Oct 02 07:44:00 CST 2021 0 399
線性代數的本質(6)——逆矩陣空間零空間

我們將線性方程組轉化為一個向量方程組(注:在此主要考慮方程的個數與未知數的個數相等的情況): 對於該線性方程組 ,我們可以通過“高斯消元”等方式來計算,同樣地可采用計算機方法來進行計算。而我們強調的是如何以“線性變換”的觀點來看“逆矩陣空間、秩與零空間”。 6.1 逆變換 ...

Sun May 17 09:14:00 CST 2020 0 667
線性代數(十) : 矩陣空間零空間

空間零空間可以用來求解一個線性映射的值域以及討論線性方程組解的情況以及可逆性 0 本節用到的概念: 線性組合,子空間 線性映射 1 矩陣向量 一個矩陣乘一個向量可以理解為這個矩陣中所有向量的線性組合比如: 有了這個概念就可以介紹空間了 2 矩陣空間 考慮 ...

Thu Aug 10 23:29:00 CST 2017 0 1647
線性代數零空間矩陣

矩陣A零度空間Ax=0解決方案集合。 求零空間矩陣A消除主要變量獲得和自由變量;分配給自由變量值獲得特殊的解決方案;特別的解決方案,以獲得零空間線性組合。 如果矩陣例如,下面的: 對矩陣A進行高斯消元得到上三角矩陣U。繼續化簡得到最簡矩陣R ...

Tue Jul 21 00:28:00 CST 2015 1 2660
線性代數筆記12——空間零空間

零空間   先看定義。A是m×n矩陣,x是向量,如果存在向量集合N,滿足:   則稱N是A的零空間零空間的意義   從定義看出,零空間是方程Ax = 0的所有解的集合:   A的零空間關心的是方程方程Ax = 0的解,准確地說是解所張成的空間,方程等於零向量也是零空間 ...

Wed Sep 05 19:38:00 CST 2018 7 15899
矩陣論 - 6 - 空間零空間

空間零空間空間綜述 向量空間是對於線性運算封閉的向量集合。即對於空間中的任意向量v和w,其和v+w和數乘cv必屬於該空間;換而言之對於任何實數c和d,線性組合cv+dw必屬於該空間。 A vector space is a collection of vectors which ...

Sun Oct 10 07:08:00 CST 2021 0 235
線性代數筆記14——空間零空間

  前面已經介紹了矩陣零空間空間,它們都屬於矩陣的四個基本子空間,基本子空間還包括空間零空間。   召喚一個矩陣:   為了找出零空間空間,先進行套路運算——轉換為最簡階梯矩陣:      只有一個主元,也就是僅有一個向量都是獨立向量,空間 ...

Wed Sep 26 05:52:00 CST 2018 0 1954
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM