和、差、積、商求導法則 設u=u(x),v=v(x)都可導,則: (Cu)’ = Cu’, C是常數 (u ± v)’ = u’ ± v’ (uv)’ = u’v + uv’ (u/v)’ = (u’v – uv’) / v2 1、2不解釋,下面給出3、4的推導 ...
我們已經能夠處理很多極限,但是對於一些特殊情況的極限問題,過去的方法顯得有些蒼白。在先前內容的鋪墊下,我們終於可以處理一些不定型的極限問題了,其中包括 型 型,這一切都是通過 洛必達法則 實現的。從此,我們甚至能夠判斷 的大小 。 不定式 把某些型如 或 的極限成為型不定式。其它常見的不定式還有 例如是一個 型不定式,底數和指數是兩股相反的力量,底數想讓表達式極限趨近於 ,指數想讓表達式趨近於 ...
2017-12-07 17:20 0 4809 推薦指數:
和、差、積、商求導法則 設u=u(x),v=v(x)都可導,則: (Cu)’ = Cu’, C是常數 (u ± v)’ = u’ ± v’ (uv)’ = u’v + uv’ (u/v)’ = (u’v – uv’) / v2 1、2不解釋,下面給出3、4的推導 ...
全微分 《數學筆記11——微分和不定積分》中說明了什么是一元函數的微分,類似地,在多元函數中同樣存在微分的概念,它有一個確切的名字——全微分。 《多變量微積分筆記1——偏導數》中,曾經提到過近似,對於f = f(x, y, z)的微小改變Δf,是對其所有變量的微小擾動的總量 ...
0x00 概述 今天和大家一起復習的是洛必達法則,這個法則非常重要,在許多問題的解法當中都有出現。雖然時隔多年,許多知識點都已經還給老師了,但是我仍然還記得當年大一的時候,高數老師在講台上慷慨激昂的樣子。 上篇文章當中我們回顧了微分中值定理,今天要說的洛必達法則其實是 ...
定積分是積分的一種,是函數f(x)在區間[a,b]上的積分和的極限。這里應注意定積分與不定積分之間的關系:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函數表達式,它們僅僅在數學上有一個計算關系(牛頓-萊布尼茨公式),其它一點關系都沒有!一個函數,可以存在不定積分 ...
不是所有被積函數都能解析地寫出原函數。對於那些可能寫出來的函數,也需要一定的積分技巧才能隨心所欲,分部積分正是其中很重要的一種技巧。 基本公式 部分積分演變自積分的乘法法則: 示例1 看起來很難對付,現在嘗試用部分積分解決。 令u = lnx,u’ = (lnx ...
微積分第一基本定理 如果F’(x) = f(x),那么: 如果將F用不定積分表示,F =∫f(x)dx,微積分第一基本定理可以看作為是兩個不定積分賦予特定的值,再用符號連接起來,計算具體的數值。 這里引入一個新符號: 於是: 示例1 示例 ...
微積分第二基本定理 這里需要注意t與x的關系,它的意思是一個函數能夠找到相應的積分方式去表達。如果F’=f,則: 下面是第二基本定理的證明。 證明需要采用畫圖法,如上圖所示,曲線是y=f(x),兩個陰影部分的面積分別是G(x)和ΔG(x),其中: 當Δx足夠 ...
在區間(a, b)上,f(x)和g(x)都可導、g′(x) ≠ 0、limx → a+f(x) = limx → a+g(x) = 0, $$\lim_{x \rightarrow a^{+}}\f ...